
Conceptual Spatial Crop Models for Potato Production

H. Chen1†, I. Leinonen1, B. Marshall2 and J.A. Taylor1

1School of Agriculture, Food and Rural Development, Newcastle University, NE1 7RU, UK; 2Consultant, 5 Muirloch Farm Cottage, Liff, Dundee, DD2 5NQ, UK

Advances in agricultural machinery, information and sensor technology have led to an increasing amount of data that is available
spatially both pre and within season. The case is compelling for the spatialisation of existing, non-spatial (field-scale) crop models
that can accommodate this ‘big data’ and lead to more precise predictions of yield and quality and an improved field management.
This study explores the conceptual spatial models based on the potato crop models that simulate crop physical and physiological
processes and predict yields and graded yields at a field-scale. Through exploring the possible spatial scales and model application
approaches considering spatial variation an optimal and more effective solution is expected. Issues concerning model quality and
uncertainty are also discussed.
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Introduction

Precision agriculture includes site specific crop management
(SSCM), a varying management approach that considers the
variation in terrain, soil, water and other environmental
elements as well as management effects within fields
(Whelan and Taylor, 2013). In order to adapt to this varia-
tion, the corresponding management is required to supply
the exact amount of inputs (water, fertiliser, agri-chemical
etc.) needed to promote healthy crop growth while simulta-
neously reducing unnecessary inputs, which may lead to
environmental pollution and increase production costs.
SSCM requires site-specific data, which may include data

on plant growth and the environment in which the plant
grows. These spatial data can be categorised into two
groups: relatively stable data, such as soil type and soil
depth, and constantly changing data, such as time series of
spatial canopy development (leaf area index), soil moisture
deficit, soil temperature, solar radiation interception etc. In
addition, there will be aspatial data for a field, such as
cultivar information, uniform management activities and
market price, which are needed for a full analysis of crop
management decisions and associated risks.
Due to a lack of fine-scale spatial and spatial-temporal

data, the ability of a grower to implement SSCM has not
been straightforward. One practical simplified approach to
SSCM is the use of a management unit (MU) approach,
where several MUs are identified in a field that are assumed
to have a relatively homogeneous crop response (Taylor
et al., 2007). Analysis and management are then conducted

uniformly within individual MUs but differentially between
MUs. With the increasing availability of data, it is possible
to have smaller units for more precise management. This
incremental expansion of the number of units can be regar-
ded as belonging to a spectrum of precision agriculture,
ranging from a traditional uniform field management
through an interim management unit approach finally to a
true SSCM approach potentially down to individual plants or
at least sites within a field. Work to date has focussed
primarily on empirical analyses of multi-variate field infor-
mation layers to generate units for sub-field management
(Ortega and Santibanez, 2007). The next step is to incorpo-
rate these information layers into crop models to improve the
predictive power and utility of these models, particularly for
tactical (in-season) crop management.
For potatoes, crop growth models, yield (quantity) models

and tuber size distribution (quality) models are already
commercially applied and are representative of existing
research capacity in the sector. However, these are limited to
point modelling at field or farm-scales using ‘average’
response functions and data. This is despite the fact that
higher resolution data is available at sub-field scales.
Consequently, the need to develop approaches for the spa-
tialisation of these traditional field-scale crop models, by
combining them with the emergent availability of ‘big data’
spatial information layers from various agri-sensor platforms,
has become a compelling task for researchers in agriculture.
This study explores conceptual spatial crop modelling based

on the non-spatial potato crop models in the Management
Advisory Package for Potatoes (MAPP) (MacKerron et al., 2004),
which simulate crop physical and physiological processes to
predict field-scale total yields and graded (marketable) yields.† Email: hongyan.chen@newcastle.ac.uk
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Crop growth models

There are many crop growth models for crop yield prediction
and management (Steduto, 2003; Panday, 2014). In these
models, the main physiological and physical processes include
the development of leaf area, light interception and dry matter
production, partitioning of dry matter, effects of soil water
dynamics and, in some, nutrients (Kabat et al., 1995).
The potato growth model in MAPP simulates the develop-

ment and growth process of a single plant, including stages
of tuber sprouting, appearance and expansion of leaves,
initiation of tubers and senescence. It calculates the fraction
of radiation intercepted as a function of leaf area index, and
then relates this to the dry matter production, which the soil
moisture deficit affects (Jefferies and Heilbronn 1995). In
MAPP, the dry matter partitioning is modelled using a
thermal-time dependent ‘harvest index’ and the total yield is
calculated by estimating the tuber dry matter concentration
as a function of soil moisture deficit and temperature.
The growth model calculates a water balance daily from

inputs of precipitation and irrigation and losses by evapora-
tion from both soil and crop, and the total extractable soil
water is obtained by defining the maximum rooting depth
and multiplying it by the extractable soil moisture volume
fraction. Nutrient dynamics and the dependence of plant
growth on nutrients are not currently modelled in MAPP.
The tuber size distribution (TSD) model in MAPP is an

empirical model, a truncated normal distribution. It estimates
the proportion by fresh weight of daughter tubers produced
in any specified size range, where tuber size is defined either
by square mesh riddle size (mm) or by the fresh weight (g) of
the individual tuber. In order to predict a TSD, one needs to
know both the total yield and total number of daughter
tubers produced which are greater than 15 mm square mesh

riddle size. This is usually generated from mid-season
manual digs.
The growth and yield model and the tuber size distribution

model of the MAPP were developed by the James Hutton
Institute (formerly Scottish Crop Research Institute), Dundee,
Scotland. The growth and yield model is designed to simulate
an individual plant that is representative of the field average.
It does not aggregate over multiple individuals nor does it
model the interaction between neighbouring plants. How-
ever, it is known that there is variability within a field in many
of the drivers of the model, particularly the canopy devel-
opment and size and the availability of soil water supply to
the crop (Allaire et al., 2014).

Spatialisation - conceptual spatial crop modelling

There are several potential ways that the MAPP model (or
any crop model) could be made spatial. It could be simply
spatialised through running the existing model indepen-
dently at a finer spatial resolution ignoring neighbourhood
effects, or converted into a true spatial model that runs at a
finer spatial scale and incorporates information on the effect
of the neighbourhood in the modelling process. The latter,
modifying existing models by integrating spatial interactions,
is preferable but more complex and not practical at the
current stage.
The possibility for running the model at a finer spatial scale

lies in the availability of spatial data. Currently MAPP uses
aspatial environmental input data, including weather data and
soil profile information, for the simulation of each field/farm.
However, fine resolution spatial data such as soil electrical
conductivity, crop growth imagery, and sampling data of soil
moisture is increasingly available. Table 1 compares the current
model input with current available data, highlighting the gap

Table 1 Key input for the MAPP growth model (as currently specified) with indications of spatial data that could be used as
input for a spatialised model.

Input
Requirement Spatialise or not Potential replacement with the data available

Husbandry info:
planting date yes if necessary Variable rate planting, variable rate haulm destruction
haulm destruction date (plant growth regulator)
planting spacing, etc.

Plant development:
Emergence date yes ground cover of different time points taken from high resolution imagery
Stem density yes (UAV, Aerial) or from remote or proximal Vis-NIR sensors
Date of Senescence yes

Soil profile:
Soil type not yet Apparent soil electrical conductivity; networked soil moisture probes
Horizon depth

Weather data:
Solar radiation not yet Modelled based on local Digital Elevation Model and weather parameters
Other variables not currently

Test digs:
Weight of tubers yes Mobile phone-based apps for counts and size distribution
Number of tubers yes
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between the spatial data available and the data required for
modelling at a finer spatial scale. However, there exists a
potential to make use of the spatial data for spatial modelling.
The challenge now lies in which scale the model should be
applied and how to replace the input with the spatial data
we have.
Possible scales to run the MAPP model at include but are

not limited to:

1. Individual plant
2. Bed planting spacing (~3m*3m grid)
3. An arbitrary pixel size (e.g. 5m2 or 10m2)
4. Management units
5. Whole field

To determine which scale is the best to run the model is a
complex task, depending on multiple criteria: including the
purpose, data availability and model requirements. Gen-
erally, the purpose is to provide growers with as accurate
information as possible for their decision-making, so the
finest scale is preferred. Since the original model simulates
individual plants, applying the model at a scale smaller than
a single plant scale is not sensible. The whole field, the ori-
ginal scale of output of the MAPP models, is obviously not
appropriate for this project either.
Considering the nature of the basic MAPP model, the more

reasonable choices would be choices 1 and 2. However, due
to a lack of corresponding input data at those scales, these
choices would be better regarded as a long-term target for
crop production and management. As a simplified interim
step, modelling crop development and yield/tuber distribu-
tion can be done at a MU level. This MU scale is variable,
depending on the number of management units specified.
This is normally limited to a maximum of 3 or 4 units, and
often only 2 (Pedroso et al., 2010), due to the feasibility of
machinery operations.
With advances in agricultural machinery, in the foresee-

able future, variable-rate operations are unlikely to be a
factor that limits the scale of SSCM. It is more likely that
limitations in scale will be imposed by the ability to process,
interpret and generate decisions from the multitude of infor-
mation sources now available to growers/agronomists. In this

study, the intent was to identify, without considering the
limitation of operation, what management unit level maximally
integrates the data available and is the most accurate when
applying the models to estimate the yield and graded yields of
the field and assist with the field management.
Spatial variability is the driver for model spatialisation. The

other challenge (as mentioned above) is to find spatially
varying data that reflect different environmental conditions
and management activities of different areas within a field as
model input to run the model spatially for more accurate
prediction and decision-making. In many cases, available
spatial data are non-identical to required input variables, so
investigating how to transform them becomes the main task.
To identify what spatial data to use to replace some certain
model inputs and how, their influence on the crop yield
needs to be analysed and appropriate methods for their
inclusion to replace the original homogeneous variables need
to be determined.
With in-season stratified sampling of crops, it is possible to

test the spatial variability of their dry matter, tuber weight
and number, plant and stem density, etc. Also, with stratified
heterogeneity test (Wang et al., 2009), we can see if they
are significantly different among the strata, derived from soil
ECa. If yes, then the ECa probably is the reason for the
heterogeneity. This test could also be done based on strata
other than those used for sampling, even on the strata gen-
erated with different criteria, e.g. planting date. In this way,
an optimum MU level would be found for a criterion (here
each unit does not have to be contiguous) and potential
influential factors would be identified.
As mentioned above, quantification of influential factors

as model input is desirable and challenging, requiring a
thorough exploration through lab experiments or data analysis.
Once this is achieved, the crop models can be applied to the
determined units with varied input. Decisions that can be made
using the model for the field as a whole can be made for each
unit, for example, when to irrigate, where and how much.
Figure 1 illustrates the whole process, in which model spatia-
lisation is realised through several steps: determination of
optimal units, preparation of varied input, model application to
spatial units and at the end, uncertainty analysis.

Figure 1 Spatialisation through applying the models to each spatial unit
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Some experimental results

A survey was performed in a field in Yorkshire, UK for a
preliminary case study and the results are listed in Tables 2
and 3, where sampling data of yield, dry matter, stems and
canopy cover have been processed and analysed. In this
field, multiple data collections have been conducted at 100
sampling points that were selected based on an existing
apparent soil electrical conductivity map (ECa).
Spatial autocorrelation helps understand the degree

to which one object is similar to other nearby objects.
Moran’s I (Index) (Moran, 1950) is used to measure spatial
autocorrelation. As we can see from Table 2, the yield,
DM and stems of the first dig have significant spatial
autocorrelation, while only the DM variable exhibits auto-
correlation at harvest. Through cluster and outlier analysis
in ArcGIS (ESRI, Redlands CA, USA), which identifies statis-
tically significant hot/cold spots and outliers using the
Anselin Local Moran’s I statistic, it is easy to find that the
high value clusters are all concentrated on the northern
section of the field.
The field was then divided into two units, a northern and a

southern unit, and tested for stratified heterogeneity with the q
statistic (Wang et al., 2016). The results are presented in
Table 3, where the greatest q value is 0.896, which means that
89.6% of variance of the canopy cover measured on July 6,
2015 can be explained by the division and is statistically sig-
nificant. Farmer’s planting at the northern part approximately
3 weeks earlier than the southern was identified as a major
reason for this variance.
Therefore, the influence factor leading to the difference

between these two units is planting date. Since planting date

is directly a model input, the process of transforming the
influence factor as an input can be omitted and the varied
input for planting date are directly formed by the two actual
dates. Applying the growth model and graded model to the
two units with the varied planting dates, yield and tuber size
distribution predictions were generated from the model, and
the accuracy can be calculated through comparing with the
observed unit averages.
Although the above is a simple case study, in principle, it

embodies the essence of the spatialisation process in Figure 1.
The situation could be more complex if the influence factors
are environmental, not managerial. For example, with soil ECa,
the field can be split into management units (classes) using
k-means classification (Taylor et al., 2007) (Fig. 2) in a number
of ways. Testing their stratified heterogeneity using the canopy
cover of 6 July, 2015, it can be seen that the most statistically
significant q value is 0.31, indicating that 5 management units
is optimal (see Table 3). Statistically this level is more reasonable
than others for transforming soil ECa as varied input for model
simulation. Combining varied input (layers), managerial or
environmental, could lead to a finer spatial scale for model
application.

Discussion

The preliminary results presented above shed a light on
where to go to achieve a sound spatial crop model for agri-
cultural practice. However, many hurdles are in the way:
where is direct incorporation of a spatial data layer possible?
where is surrogate spatial data available and what trans-
formation is required for use in the crop model? In addition,
how to integrate higher resolution data, especially imagery

Table 2 Autocorrelation test with Moran’s I for selected crop parameters mid-season and at harvest (n = 100)

Mid-season Dig Harvest Dig

Yield DM Stems Yield DM Stems

Moran’s I 0.302 0.253 0.165 0.161 0.344 − 0.115
z-score 3.846 3.238 2.161 1.465 4.230 −0.819
p-value 0.0001*** 0.0012*** 0.0307** 0.1428 0.0008*** 0.4130

**5% significance level; ***1% significance level

Table 3 Stratified heterogeneity test with q statistic for different MUs derived from different spatial criteria.

Statistic
ECa

(3 MUs)
Soil Type
(2 MUs)

Planting date
(2 MUs)

ECa
(3 MUs)

Soil Type
(2 MUs)

Planting date
(2 MUs)

Yield Canopy cover
Mid-season Dig 18 June 2015

q statistic 0.057 0.066 0.374 0.054 0.137 0.715
p value 0.212 0.032** 0.000*** 0.075* 0.000*** 0.000***

Harvest Dig 6 July 2015
q statistic 0.061 0.052 0.133 0.082 0.220 0.896
p value 0.826 0.413 0.115 0.020** 0.000*** 0.000***

*10% significance level; **5% significance level; ***1% significance level
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data such as canopy cover, to update and ‘reset’ the model
during the season. All these need to be further explored
thoroughly through lab experiments or data analysis before
reaching our target, namely, applying the models spatially.
Uncertainty in spatialisation has to be analysed through

comparing our model estimations with the field samples for a
more informative model application. There are two possible
ways to improve the model: 1) The first is to use the mea-
sured data for iterative adjustment of the model’s initial
conditions and to determine cultivar specific parameters, so
that the model’s predictions agree with periodic remotely-
sensed measurements of a modelled variable e.g. LAI; 2)
The second approach is to correct the predictions of the
model through comparing the real data at a few validation
sites with the estimated values from the model and to create
a spatial adjustment coefficient to correct model output
spatially across the field.
One important point also to consider is whether the

grower or modeller know what the cause of diversion
between observation and prediction is. If one does and there
is a measurement of the independent variable causing
this divergence, then the first approach above is possible. If
there is more than one known cause then some means
of weighting or combining the effects of the various causes

is needed. Finally, if the cause is unknown, then only the
second approach is an option. Regardless of the approach,
there will also be nugget variation (unexplained random
variation) in the data, for which the Monte Carlo method can
be used to provide an estimation.

Conclusions

This study explored the conceptual spatial models based on
non-spatial potato crop models, which simulate crop physical
and physiological processes and predict yields and graded
yields at a field-scale. Through preliminary experiments that
delve into optimal spatial scales, more effective approaches to
model application considering spatial variation and depen-
dence in environmental variables and crop development, a
favourable scale and approach is appointed and the issues
concerning model quality and uncertainty are discussed.
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