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a b s t r a c t

Two-dimensional systematic sampling and maximal stratification are frequently used
in spatial surveys, because of their ease of implementation and design efficiency. An
important drawback of these designs, however, is that no direct estimator of the design
variance is available. In this paper estimation of the sampling variance of a total in amodel-
based context is considered.

The estimation strategy is based on the use of the sample variogram which can be
either a non-parametric or a parametric one. Consistency of the estimators is discussed;
simulations and an application to real data show the good performance of the proposed
procedure in practice.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In agricultural and environmental surveys statistical units are often defined using purely spatial criteria, i.e. units are
defined using geographical coordinates; for details see Benedetti et al. (2015). Also, many National Statistical Institutes are
increasingly geo-referencing their sampling frames by adding information regarding the exact position of each record.

An inherent and fully recognized feature of spatial data is that they are dependent, as expressed in Tobler’s first law
(Tobler, 1970). As a consequence, certain sampling schemes for spatial units and estimators can be defined by introducing
a suitable model for spatial dependence within a model-based or model-assisted framework.

In this paper we will discuss and implement a model-based estimator of the variance for some spatial sampling designs;
in particular we will concentrate on two-dimensional systematic sampling and one-per-stratum (or maximal stratification)
sampling which are quite common for surveys where sampling units are spatially referenced. They are relatively simple
to plan and implement; provide unbiased estimators of totals and, selecting samples that are well-spread over the study
region, can even yield lower variability in design-based estimators (Cochran (1977, sec. 5.7 and p. 208); Fewster (2011)).
This property is mainly justified by the literature on spatially balanced samples, according to which, for both empirical and
theoretical reasons selecting samples that are spatially well distributed implies a gain in efficiency, particularly whenwe are
dealing with populations positively autocorrelated or that follow a spatial trend (Stevens and Olsen, 2004; Grafström and
Tillé, 2013). However the distinguishing characteristics of these designs are that the second order probabilities are equal to
zero at least for close units that belong to the same stratum or that are within the step used in systematic sampling. This is a
condition that brings us in the field of non-measurable designs and implies the impossibility to use a design-based estimator
of the variance.
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Recall that a probability sampling design is measurable if all the inclusion probabilities of the first and second order
are strictly positive. The positivity of the inclusion probabilities of the first order is a sufficient condition for an unbiased
estimator of a total to exist (Fuller, 2009, p. 8). The condition of positivity of the inclusion probability of the second order,
instead, makes it possible to calculate an unbiased (or approximately unbiased) estimator of the sample variance. Such
design-based variance can be used to build design-based confidence intervals. For all the details see Särndal et al. (1992,
sect. 2.4 and sect. 14.3) and Benedetti et al. (2015, p. 115).

Solutions to the problem of variance estimation in non-measurable designs (as defined above) discussed in the literature
and used in practice can be divided into three broad groups: (i) ignoring the problem, i.e. using variance estimators derived
from simple random sampling; (ii) post-stratification, i.e. aggregating strata or adjacent samples from systematic designs
and using stratified variance estimators; (iii) modeling the process producing the finite population and exploiting this
information to estimate the variance.

There seems to be increasing interest in the literature in using explicit model-based solutions to the problem of variance
estimation in non-measurable designs even if one is primarily interested in design-based inference: general reference texts
are Wolter (2007, Ch. 8) and Fuller (2009, sec. 5.3) and specific contributions for spatial data are those of Opsomer et al.
(2012) and Bartolucci andMontanari (2006) which rely on linear models based on auxiliary variables, Fewster (2011) which
applies amultinomialmodel to strip sampling and transect sampling andD’Orazio (2003)which applies corrections based on
Moran’s and Geary’s spatial auto-correlation statistics to simple random sampling and post-stratification derived estimators
of variance.

This paper is strictly connected to this stream of research, where a design-based inference for the mean or the total of a
population is coupled with a model-based estimation of the variance. No auxiliary variables are involved, however, we will
assume that there is a random field underlying the population units.

In principle the method proposed can be applied on any design (as shown by Proposition 1) and we expect that, as our
simulations show, the gain in efficiency is greater the stronger the structure of dependence on the underlying field.

On the other hand the method is computationally intensive and we believe its practical relevance be at its highest in
non-measurable designs as in the case of systematic sampling and stratified sampling with one unit per stratum for spatial
data. For other cases, where unbiased estimators of the variance exist, these might be preferred alternatives in practice.

In this paper a full discussion of the maximal stratification case is presented while we analyze the performance of our
estimator in two-dimensional systematic sampling by means of simulations.

To see things in another way, one could say that kriging techniques (see, e.g. Cressie, 1993) are exploited for estimating
the variance. In this context it is worthmentioning Goovaerts (1997) andWang et al. (2009, 2013) and the references therein
which discuss using kriging in the context of mean estimation.

We would like to point out that stratification with more than one unit per stratum is not considered here, being a
measurable design for which a design-unbiased variance estimator exists. In this direction one can consult, e.g., the recent
contributions of Wang et al. (2016, 2012, 2010).

For an up-to-date and full discussion of the designs discussed here and their relevant applications in fields such as natural
resource surveys, forestry inventories and soil sampling for precision agriculture see Benedetti et al. (2010, 2015), Gregoire
and Valentine (2007), and Tan (2005).

In Section 2 the estimators are defined and discussed; in Section 3, using simulated data, comparisons with other
estimators of the variance using either parametric and non-parametric forms of the variogram are provided and an
application to the celebrated Mercer and Hall data is presented. Proofs of the results are in Appendix.

2. Estimators of the expected variance

2.1. Notation and assumptions

Let {Yi, i ∈ T } denote a random field, where T is an index set. In a general setting T = Z2 represents a 2-dimensional
lattice, while for T = R2 one has a continuous random field. T can also represent a collection of spatial entities such as
territorial economic or administrative units. This last setting is the one which interests most here as the case where there
is a, possibly very large, finite population U of size N; in this case let T = TN ⊂ Z2 with |TN | = N , i.e. |T | indicates the
cardinality of T . The set TN of territorial units can be thought to be embedded in some general stationary field {Yi, i ∈ R2

}.
Let ȲN = N−1 N

i=1 Yi be themean of U and let Tn, |Tn| = n, n < N , denote a sample set of observations from TN collected
according to some sampling strategy. The primary object of investigation is a model-based estimation of the variance of
a design-based, say Ȳd, estimator of ȲN , where the suffix d indicates the sampling design. For example, in the case of a
systematic design, Ȳd = Ȳsy, the simple mean of the systematic sample; in the case of a stratified sampling design Ȳd = Ȳst ,
a weighted mean of the strata means, see Cochran (1977) for further details.

Estimation of the expected design variance E[Var(Ŷd)] in a model based context is considered, i.e. when the finite
population is regarded as a random realization from a super-population model. In our case we will assume that the geo-
referenced Y ’s satisfy:

wjf
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Assumption 1. {Yi, i ∈ T } is a stationary random field with mean E(Yt) = µ, covariance Cov(Yi, Yj) = C(i − j) and
E(Y 4) < ∞.

Note that we do not require the field to be isotropic as the covariance rests on the difference (i − j) between locations
only, nor we require that TN represents a regular lattice although in Section 4, for simplicity, simulations based on regular
grids are considered. We are going to investigate the behavior of estimators and parameters of the finite population U as Tn
and TN grow large. For this we will place the restriction that ∥i − j∥ ≥ δ > 0, ∀i, j = 1, 2, . . . ,N where ∥ · ∥ indicates the
Euclidean norm. This assures that the observed field increases in extent as N increases. We are not interested here in the
case where a sample may become increasingly dense in some bounded region.

Furthermore, we ask that the covariances be absolutely summable, i.e. we set:

Assumption 2. For the field of Assumption 1 it holds that limN→∞


i,j |Cov(i − j)| < ∞.

The above assumption essentially excludes random fields with long memory. Examples of random fields satisfying
Assumptions 1 and 2 are the so-called spherical model used in geo-statistics (see, e.g. Mardia andMarshall, 1984, Matheron,
1971, Journel and Huijbregts, 1978), and the isotropic covariancemodel discussed byWhittle (1954). See also Leonenko and
Taufer (2013) for models on a lattice with covariance functions satisfying Assumptions 1 and 2.

In the paper we will extensively use the variogram E(Yi − Yj)
2

= 2γ (i − j), see, e.g. Cressie (1993) for further details. In
practice wewill exploit the information given by the correlation between units and use distance as an auxiliary information.

A capital letter will be used to indicate the unit values either in the sample and the finite population. When needed,
sample and population are distinguished by the extended notation {Yi, i ∈ Tn} and {Yi, i ∈ TN} respectively.

2.2. Sampling with unequal probabilities of selection

We begin with a simple random sampling schemewith unequal probabilities of selection: given the form of the variance
of the celebrated Horvitz–Thompson estimator, it provides a natural justification for the use of the variogram. Defining with
ŶHT the Horvitz–Thompson estimator of a population total, we have:

Var(ŶHT ) =

N
i=1

N
j>i

(πiπj − πij)


Yi

πi
−

Yj

πj

2

(1)

where πi = P(Yi, i ∈ TN) and πij = P(Yi, Yj, (i, j) ∈ TN), i, j = 1, 2, . . . ,N , i ≠ j are respectively the first and second order
inclusion probabilities.

In order to exploit the spatial location of units and construct the variogram, defineN(d) as the set of pairs of observations
with spatial coordinates i and j such that |i − j| = d; more formally, N(d) = {(i, j) : |i − j| = d; i, j ∈ TN} and |N(d)| its
cardinality.With some abuse of notationwe simply indicate that d = 1, . . . ,DwithD indicating the total number of distinct
differences |i − j|. In practical applications an approximate distance d is used, implemented with a certain tolerance.

The following proposition links the expected variance of the HT estimator to the variogram and will introduce our
estimation strategy; the proof is in Appendix.

Proposition 1. Let {Yi, i ∈ TN} be a stationary random field satisfying Assumption 1 and define

g1(π, d) =


|i−j|∈N(d)

(πiπj − πij)

πiπj
, g2(π) =

N
i=1

N
j>i

(πiπj − πij)

πiπj
. (2)

Then

E[Var(ŶHT )] = 2
D

d=1

g1(π, d)γ (d) + σ 2g2(π). (3)

Formula (3) can be seen as a general formula for our estimation strategy. Note that the quantities g1(π, d) and g2(π)
are known as information on the distance and the inclusion probabilities are known in advance for the whole population.
It follows that by substituting in (3) consistent estimators of the variogram γ and the variance σ 2 one gets a consistent
estimator for the expected variance.

In the case where all units have the same probability of being selected, i.e. πi = n/N and πij = n(n − 1)/N(N − 1),
i, j = 1, 2, . . . ,N , the anticipated variance can be reduced to

E[Var(ŶHT )] = 2
N
n

(N − n)
(N − 1)

D
d=1

|N(d)|γ (d). (4)
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This essentially corresponds to the approach suggested by Fuller (2009, sec. 5.3) where he also discusses the application to
the case of designs with one unit per stratum.

In maximal stratification the first order inclusion probabilities are typically constant, while πij = πiπj if units i and j are
in different strata andπij = 0 if the two units are in the same stratum. In the case of kth step systematic sampling the second
order inclusion probabilities are πij = 1 if units i and j, are at some kth step distance, and 0 otherwise.

2.3. Stratified sampling with one unit-per-stratum design and systematic sampling

Consider the case of a stratified sample with one unit per stratum. Let Ȳst denote the sample mean of a stratified sample
and h = 1, . . . ,H the strata. In the case of a one-per-stratum design, lettingWh = Nh/N , we have the classical result

Var(Ȳst) =

H
h=1

(1 − N−1
h )W 2

h S
2
h . (5)

Again, one can link the expected variance to the variogram by noting that:

S2h =
1

(Nh − 1)

Nh
i=1

(Yi − Ȳh)
2

=
1

2Nh(Nh − 1)

Nh
i=1

Nh
j=1

(Yi − Yj)
2. (6)

From (6) under the super-population model and using the relation E(Yi − Yj)
2

= 2γ (i − j),

E(S2h ) =
1

Nh(Nh − 1)

Nh
i=1

Nh
j=1

γ (i − j). (7)

In stratum h, let Nh(d) = {(i, j) : |i − j| = d, i, j = 1, 2, . . . ,Nh} and suppose, in stratum h, d = 0, 1, 2, . . . ,D; then:

E(S2h ) =
1

Nh(Nh − 1)


Nhγ (0) +

D
d=1

|Nh(d)|γ (d)


. (8)

Using all sample data, a parametric or semi-parametric model for γ (d) can be estimated and substituted in (8) to obtain an
estimated variance for Ȳst in a one per stratum design.

With the help of Lemmas 1 and 2 in Appendix, we can establish a consistency result for the model-based estimators. The
proof is given in Appendix.

Proposition 2. Let γ̂ denote a consistent estimator of the variogram γ . Then, under Assumptions 1 and 2, for H = o(N), as
N → ∞,

H
h=1

(1 − N−1
h )W 2

h Ŝ
2
h , with Ŝ2h =

1
Nh(Nh − 1)


Nhγ̂ (0) +

D
d=1

|Nh(d)|γ̂ (d)


, (9)

is a consistent estimator of Var(Ȳst) as N → ∞.

Note that in Proposition 2, the term S2h is substituted by a general variogram approximation, not depending on h. In
practice the two dimensional systematic sampling can be treated analogouslywhere the expected variance can be estimated
by substituting a variogram approximation to all differences in the sampled population.

An R code to compute the estimators is available from the authors upon request.

3. Comparisons of estimators by a Monte Carlo study

This section presents the results of someMonte Carlo experiments bywhich the performance of estimator (9) and that of
some alternative estimators are compared. Comparisons include populationswith different intensities of spatial dependence
and three different variogram estimators.

In the first subsection details on the simulation design such as the generated populations, the variogram estimators used
and the alternative estimators used as a benchmark are provided. In the second one the results of the simulation will be
presented and discussed.

3.1. Simulation design

For our comparison four different populations are considered: the first consists of real data, while the remaining are
simulated ones.
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The real population considered is based on the data collected by Mercer and Hall (1911, Tab. 5) in 1910 summer by
the Rothamsted Experiment Station of Harpenden, Hertfordshire, England. This data set is well known and has been used in
several papers in spatial analysis such as Whittle (1954), Patankar (1954), Besag (1974), Ripley (1981) and Cressie (1993).
Mercer and Hall collected data on the weight in lbs of the yield of grain and straw on a field divided in 500 approximately
regular cells (or plots). The dimension of each plot was approximately 3.2 × 2.5 m over a one-acre uniform area. Then one
plot was approximately 1/500 of an acre. In the paper we consider only the data on the wheat yield. The dataset is then a
regular grid (or raster) of 20 (in direction South–North) × 25 (in direction West–East) = 500 cells.

The three remaining populations are composed of simulated data on regular grids of 20 × 20 = 400 cells. The choice of
this dimension is due to the possibility of choosing two different sample sizes in two dimensional systematic sampling and
maximal stratification sampling.

The three simulated populations are the following:

(i) A quadratic trend (QT ) of the form Yi = (i1 − 10)2 + (i2 − 10)2 + 3 + ε with ε ∼ N(0, 4) where the pixel i in the grid
has coordinates (i1, i2). The random variables ε in each cell are independent of each other.

(ii) A Gaussian random field (GRF1) µ = 5, σ 2
= 1 and exponential correlation function ρ(u) = exp{−u/φ} with φ = 3.

(iii) A Gaussian random field (GRF2) µ = 5, σ 2
= 1 and Gaussian correlation function ρ(u) = exp{−(u/φ)2} with φ = 3.

The first simulated population represents a spatial trend while in the other two there is presence of autocorrelation: the
first with an exponential variogram and the second with a Gaussian variogram. Both can be useful to see what happens to
the estimators if the variogram used is not the correct one (e.g. using an exponential variogram in computing the estimators
while the population is characterized by a Gaussian one).

For further details on Gaussian random fields, see Diggle and Ribeiro (2007, Ch. 3). For the four populations above, in
order to have an idea of the strength of spatial dependence we have computed Moran’s index either under the normality
assumption and under randomization, using queen’s and rook’s neighborhoods obtaining quite similar results in the various
cases. The value of the index under the hypothesis of normality and using a rook neighborhood is 0.3073 forMH data, 0.9534
for QT data, 0.7389 for GRF1 and 0.8873 for GRF2.

In order to compare the performance of our and alternative estimators, the real and simulated populations are divided
into n domains (or strata), i.e. the N = R × C regular grid of units of the population is divided in non-overlapping blocks of
k = kR × kC cells. In this way n strata, each formed by a regular grid of size nR × nC with nR = R/kR and nC = C/kC (both
integers), are obtained.

In the actual simulation runs we have the following values:

(i) for the Mercer and Hall (MH) data, kR = kC = 5. Hence the initial N = 500 = 20 × 25 units have been organized in 25
strata composed of 20 units (pixels in Fig. 1);

(ii) for the three simulated populations, for theN = 400 = 20×20units, twodistinct scenarios are considered: kR = kC = 5
and kR = kC = 4which respectively yield two regular grids of n = 16 and n = 20 strata. In a such away the aggregation
problem of adjacent cells is limited (for a discussion see Ripley, 1981, pp. 108–109) and a control for increasing sample
size is introduced.
With self-explaining acronyms, in the output tables we will indicate the different simulate populations and sizes as
QT 16, QT 25, GRF116, GRF125, GRF216, GRF225.

As far as the sampling procedures are concerned, in the case of maximal stratification the selection procedure has
been repeated 1000 times and based on this we construct the empirical distribution of the estimators. In the case of two-
dimensional systematic sampling, given the number possible samples is limited to stratum size (k), we simply selected all
possible samples.

The performance of the proposed estimation strategy is compared either with estimators which explicitly consider the
spatial nature of the problem or estimators which ignore the problem. We do not consider estimators based on auxiliary
variables as the estimators proposed here do not and this situation is quite common in agricultural trials.

(i) The classical variance estimator of theHT total, denoted with V̂SRS(Ŷ ) (see Cochran, 1977, p. 261), which just ignores the
problem and treat the systematic and stratified samples as simple random samples (SRS).

(ii) The estimators proposed by D’Orazio (2003) which imply a correction of V̂SRS(Ŷ ) by using either Geary (c) or Moran (I)
spatial auto-correlation indexes (see, e.g., Cliff and Ord, 1981, Ch. 1 and 3 or Ripley, 1981, sec. 5.4); namely V̂SRS(Ŷ ) · c
and V̂SRS(Ŷ ) · I .

Finally, as far as variogram estimators are concerned, we consider three different estimation strategies:

(i) a moment based variogram estimator, i.e. for {Yi, i ∈ Tn},

γ̂ (d) =
1

2N(d)


(i,j)∈N(d)

(Yi − Yj)
2
; (10)
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Fig. 1. Left: simulated populations (each cell in the grid is a sampling unit); Right: Empirical variogram; the classical method of moments estimator
(Cressie, 1993, Chapter 2). 21 is the numerical value defining the maximum distance for the variogram. Pairs of locations separated for distance larger than
this value are ignored for the variogram calculation. The correlation function is the exponential model. Value of the smoothness parameter = 0.5.

(ii) a robust to contamination of outliers estimator (Hawkins and Cressie, 1984), see also Cressie (1993, p. 175, formula
2.4.12).

γ̂ (d) =

1
N(d)


(i,j)∈N(d)


|Yi − Yj|

1/2
4

0.914 + 0.988/N
(11)

(iii) a nonparametric variogram estimator as proposed by Garcia-Soidan et al. (2003). This estimator estimates a
multidimensional variogram (and its first derivatives) using local polynomial kernel smoothing of linearly binned semi-
variances. We have set the bandwidth parameter equal to 10 as it is done in most practical applications. For further
discussion see also Fernández-Casal et al. (2003) and Fernández-Casal and Francisco-Fernández (2014).
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Table 1
Maximal stratification: empirical relative bias and RMSE of the estimators. 1000 Monte Carlo replications. Mercer and Hall (MH) data; Quadratic Trend
(QT) data, Gaussian random fields 1 and 2 (GRF1 and GRF2) data. Suffix denotes sample size.

V̂MM V̂RBS V̂NP V̂SRS V̂SRS · c V̂SRS · I

Relative bias

MH −0.012 −0.023 −0.131 0.267 0.184 −0.130
QT16 0.656 0.932 3.635 2.524 2.094 0.679
QT25 1.102 1.467 5.945 4.429 2.873 0.356
GRF116 0.171 0.103 0.775 0.878 0.740 0.738
GRF125 0.284 0.158 0.776 1.277 0.935 0.520
GRF216 −0.110 −0.163 1.573 0.611 0.429 0.422
GRF225 0.220 0.109 2.426 1.272 0.924 0.841

Relative RMSE

MH 0.366 0.407 0.825 0.419 0.375 0.458
QT16 0.759 1.098 4.667 2.685 2.216 0.924
QT25 1.171 1.585 6.628 4.534 2.938 0.454
GRF116 0.523 0.516 1.834 1.059 0.929 0.993
GRF125 0.482 0.439 1.453 1.378 1.028 0.843
GRF216 0.394 0.450 2.802 0.837 0.670 0.813
GRF225 0.424 0.455 3.485 1.384 1.028 1.153

Based on the above variogram estimators we propose then three different variance estimators which we will denote
respectively as V̂MM , V̂RBS and V̂NP .

3.2. Results

Tables 1 and 2 report the simulation results respectively for the case of maximal stratification and two-dimensional
systematic sampling. In both tables the relative bias and relative square root of theMSE are reported, i.e. for the relative bias

Ê[V̂ (Ŷd)] − V (ŶHT )

V (ŶHT )
(12)

and for the relative RMSE,
Ê[V̂ (Ŷd) − V (ŶHT )]2

V (ŶHT )
(13)

where, following the notation and results introduced in Sections 2 and 3, V (ŶHT ) is the true variance of the HT estimator
which can be calculated because the inclusion probabilities for each sample design are known; it becomes then the
benchmark for our procedures. Ê[V̂ (Ŷd)] indicates the mean obtained in the simulation runs by the different estimation
strategies under each sample design; the operator Ê should be read as E in the case of systematic sampling as all possible
samples have been considered.

As far as maximal stratification is concerned, from the first part of Table 1 (relative bias) the only circumstances of
underestimation of V (ŶHT ) are in the case of MH data (weak spatial auto-correlation) and when, for small sample size,
there is a wrong specification of the auto-correlation function for variogram estimator (GRF216). In both cases the size of the
relative bias is quite small compared to that of other estimators.

In all other cases our estimators V̂MM and V̂RBS have a positive relative bias always smaller than that of other estimators.
An exception is V̂NP ; the choice of the window parameter may get a too high flexibility in the variogram estimator with
consequent high variability in variance estimates. We will not pursue fine tuning of the window parameter in this context
and this case will not be considered any more in our analysis.

Next, note from Table 1 that the relative RMSE of the proposed estimators is always smaller of the estimators of D’Orazio
(2003) but the case of QT 25. Probably the Moran’s index correction better captures the high positive correlation present in
the population.

In order to facilitate interpreting the figures in Tables 1 and 2, the values of the relative RMSE of ours and the estimators
suggested by D’Orazio have also been compared with the relative RMSE of the SRS design: Tables 3 and 4, for an estimator
V̂ , report the values

100 ×


1 −

relRMSE V̂

relRMSESRS


(14)

to measure the efficiency gains of spatial estimators with respect to SRS (Dickson et al., 2014).
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Table 2
Systematic sampling: population relative bias and RMSE of the estimators. Mercer and Hall (MH) data; Quadratic Trend (QT) data, Gaussian random fields
1 and 2 (GRF1 and GRF2) data. Suffix denotes sample size.

V̂MM V̂RBS V̂NP V̂SRS V̂SRS · c V̂SRS · I

Relative bias

MH 0.019 0.063 −0.350 0.279 0.160 −0.237
QT16 12.110 15.527 25.566 27.778 20.541 6.978
QT25 1.255 2.352 0.719 4.662 2.471 0.071
GRF116 3.278 3.431 2.915 5.361 4.939 4.994
GRF125 −0.063 0.016 −1.255 0.506 0.282 0.058
GRF216 15.029 15.182 20.099 19.851 17.609 17.698
GRF225 2.808 2.170 0.442 3.870 3.020 2.496

Relative RMSE

MH 0.411 0.528 1.641 0.462 0.389 0.506
QT16 12.340 15.830 30.788 28.487 20.702 6.994
QT25 1.302 2.401 2.823 4.739 2.482 0.088
GRF116 3.754 4.078 6.416 5.799 5.411 5.593
GRF125 0.268 0.327 1.820 0.646 0.425 0.427
GRF216 16.717 16.547 41.856 22.088 19.483 20.499
GRF225 2.894 2.380 7.279 4.117 3.135 2.950

Table 3
Efficiency gain for maximal stratification design. 1000 Monte Carlo replications. Mercer and Hall (MH) data; Quadratic Trend (QT) data, Gaussian random
fields 1 and 2 (GRF1 and GRF2) data. Suffix denotes sample size.

Efficiency gain

V̂MM V̂RBS V̂SRS · c V̂SRS · I

MH 12.66 2.86 15.80 −9.41
QT16 71.75 59.13 27.33 75.45
QT25 74.18 65.04 47.64 98.14
GRF116 50.67 51.30 6.70 3.56
GRF125 65.00 68.15 34.25 33.87
GRF216 52.88 46.21 11.79 7.20
GRF225 69.39 67.16 23.85 28.34

Table 4
Efficiency gain for two-dimensional systematic design. Mercer and Hall (MH) data; Quadratic Trend (QT) data, Gaussian random fields 1 and 2 (GRF1 and
GRF2) data. Suffix denotes sample size.

Efficiency gain

V̂MM V̂RBS V̂SRS · c V̂SRS · I

MH 11.01 −14.19 15.80 −9.41
QT16 56.68 44.43 27.33 75.45
QT25 72.52 49.33 47.64 98.14
GRF116 35.27 29.68 6.70 3.56
GRF125 58.53 49.35 34.25 33.87
GRF216 24.32 25.09 11.79 7.20
GRF225 29.71 42.18 23.85 28.34

Note from Table 3 that for maximal stratification, notwithstanding the good performance of V̂SRS · I , the proposed
estimators bring to considerable efficiency gains with respect to SRS: an average efficiency gain of 65% for V̂MM against
an average efficiency gain of 40% for V̂SRS · I .

Examining the case of spatial systematic sampling in Table 2 note that the high values of relative bias and relative RMSE
concern the small sample case (n = 16). The problem reduces substantially in the case n = 25. Inspection of Table 2 confirms
the good performance of V̂SRS · I in the case of heavily concentrated populations (QT ). In all other cases the estimators
proposed here perform better. The difference in efficiency gain between V̂SRS · I and V̂MM · I is now smaller (respectively 40%
and 45%) but remains in favor of the latter.

4. Conclusions

This paper suggests using a parametric or non-parametric variogram estimator in a model-based variance estimation
in spatial surveys. A natural justification for this approach, as discussed in Section 2.2, stems from the analogies of
the variogram and the expected variance of the HT estimator in the case of equal selection probabilities of the first
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and second order. From this, extensions to other cases of interest in practical applications, specifically two-dimensional
systematic sampling and maximal stratification, are derived. For these two survey strategies, simulation results show
that the variogram-based estimators outperform alternative estimators in several cases and indeed they also have a good
performance when the spatial correlation between units is low. Theoretical results show the consistency of the suggested
estimators.

Appendix

With the notation Xn = Op(an) it is meant that, for any ε > 0 there exists a finite M such that P(|Xn/an| > M) < ε ∀n
and Xn = op(an) meaning that, for any ε > 0, limn→∞ P(|Xn/an| > ε) = 0.

Proof of Proposition 1. We have

E[Var(ŶHT )] =

N
i=1

N
j>i

(πiπj − πij)E

Yi

πi
−

Yj

πj

2

; (15)

note that we can take the following estimate
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Indicating with Cov(Yi, Yj) = C(i − j) (the covariogram) and exploiting the relationships E(Y 2
i ) = C(0) + µ2, E(YiYj) −

E(Y 2
j ) = C(i − j) − C(0), 2γ (i − j) = 2(C(0) − C(i − j)), the above equation becomes
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(C(0) + µ2). (17)

Noting that C(0) + µ2
= σ 2, substituting the result in (15) and exploiting the definition of g1(π, d) and g2(π) we finally

obtain (3). �

Proof of Proposition 2. If γ̂ (d) is consistent for γ (d) then (9) is consistent for the estimated variance E(Var(Ȳst)) =H
h=1(1 − N−1

h )W 2
h E(S

2
h ). Lemmas 1 and 2, providing convergence rates, show that Var(Var(Ȳst)) = op(1) as N → ∞

and as long as H = o(N). It follows that |E(Var(Ȳst)) − Var(Ȳst)| = op(1) for N → ∞ and the result of the proposition
follows. �

Lemma 1. Let {Yt , t ∈ TN} satisfying Assumptions 1 and 2. Let TN1 and TN2 be two non-overlapping subsets of TN . Then

Var(S2N) = Op


1
N


Cov(S2N1

, S2N2
) = Op


1

√
N1

√
N2


. (18)

Proof. Defining µN and 6N to be respectively the (constant) mean vector and the covariance matrix of {Yt , t ∈ TN}, we can
obtain an upper bound for Var(S2N) from Theorem 2 in Knautz and Trenkler (1995) as

Var(S2N) ≤ (µ4 − 1)(1 − N)−2
N−1
i=1

λ2
i (µ4 ≥ 1) (19)

where λ1 ≥ λ2 ≥ · · · ≥ λN are the eigenvalues of 6N . Then Var(S2N) = Op
 1
N


if µ4 < ∞, true by assumption, and if

(1 − N)−1
N−1
i=1

λ2
i < ∞. (20)
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To devise an easy way to check whether condition (20) holds, let us resort to matrix norm theory which tells us that, if ∥6N∥

denotes a subordinate norm of 6N , then |λ1| ≤ ∥6N∥ where one can take ∥6N∥∞, i.e. the max row sum of 6N . Note next
that the max row sum of 6N is


i,j C(i − j) which is finite if {Yt , t ∈ TN} satisfies Assumption 2.

The fact that Cov(S2N1
, S2N2

) = Op


1

√
N1

√
N2


follows by an application of the Cauchy–Schwarz inequality. �

Lemma 2. Let Nh = N/H, then, as N → ∞ and under Assumptions1 and,Var(Var(Ȳst)) = Op
 1
N


if H is fixed,Var(Var(Ȳst)) =

op


1
N2


, if H = o(N).

Proof. Exploiting the results of Lemma 1,
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where in the last line we have used the simplifying assumption that Nh = Nk = N/H . One can see that the dominating term
in the above expression, as N → ∞ is of order Op(1/N) if H is fixed, while it is of order op(1/N2) if the number of strata H
is allowed to grow with the population dimension N at rate H = o(N). �
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