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Reliable assessment of water quality is a critical issue for estuaries. Nutrient concentrations show significant spa-
tial distinctions between areas under the influence of fresh-sea water interaction and anthropogenic effects. For
this situation, given the limitations of general mean estimation approaches, a newmethod for surfaceswith non-
homogeneity (MSN) was applied to obtain optimized linear unbiased estimations of the mean nutrient concen-
trations in the study area in the Yangtze estuary from 2011 to 2013. Other mean estimation methods, including
block Kriging (BK), simple random sampling (SS) and stratified sampling (ST) inference, were applied simulta-
neously for comparison. Their performance was evaluated by estimation error. The results show that MSN had
the highest accuracy, while SS had the highest estimation error. ST and BK were intermediate in terms of their
performance. Thus, MSN is an appropriate method that can be adopted to reduce the uncertainty ofmean pollut-
ant estimation in estuaries.
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1. Introduction

The water quality of the Yangtze estuary has been a substantial con-
cern in recent years due to the aggravated pollution caused by increases
in regular human activities, industrial discharge, and oil leakage events.
According to the China Marine Environment Quality Bulletin, the water
quality of the Yangtze estuary and Hangzhou bay has been listed as ex-
tremely unqualified among the nine major tidal estuaries in China. Be-
cause marine resources have been emphasized as a strategic resource
for the national interest, the observation, assessment, andmanagement
ofmarine pollution has become critical (Floehr et al., 2015; Smith, 2003;
Su et al., 2015).

Estuary water pollution involves eutrophication with various exces-
sive nutrient components distributed by biochemical and physical pro-
cesses (D. and D., 2004; Huang et al., 2006; Li et al., 2014; Zhang et al.,
2007). Increasing numbers of studies have focused on the physical, bio-
chemical, and coupled mechanisms involved in the distribution and
transfer of pollutants (Shen et al., 2001; Sun et al., 2013; Wang et al.,
2006; Chen et al., 2009). The spatial and temporal distributions of nutri-
ents are related directly to the evolution of the contamination area and
ngjf@lreis.ac.cn (J.-F. Wang).
thus merit considerable attention from both academia and industry
(Edmond et al., 1985; Gui lin et al., 2012; Pan and Shen, 2010; Zhang
et al., 2011). However, statistical approaches adopted for the assess-
ment of nutrient concentrations are rarely discussed, although accuracy
in such estimates is highly desired. Themost commonly adopted gener-
al-mean-value theory, which still remains useful, is partially violated
under conditions of non-homogeneity. Furthermore, potential interde-
pendence of the observed data of a variable in the same block area is
rarely considered. Few efforts have beenmade to improve the statistical
method itself for the estimation of the nutrient pollutant concentration,
especially for the two major components, nitrate and phosphate.

Regionalmean nutrient pollutant concentrations are important indi-
cators in spatial and temporal variation analysis that decision-makers
usemost; these concentration estimations are usually generated by typ-
ical interpolation and statistical methods. However, estimation uncer-
tainty remains an issue that cannot be avoided or neglected (Cambule
et al., 2014; Liu et al., 2014; Murphy et al., 2010). In most cases, the
field data of the surface seawater layer are collected at sampling gauge
locations at certain depths. Thus, the estimation of average pollutant
concentration is actually a process that uses limited or finite datasets
to estimate the continuous area. Classical statistical methods and
model-based inference are each able to handle this circumstance
(Haining, 1988; J. and V., 2002; Matheron, 1963; Shimada and Taro,
2015; Wang et al., 2009). Classical statistical methods can achieve an

http://crossmark.crossref.org/dialog/?doi=10.1016/j.marpolbul.2016.09.021&domain=pdf
http://dx.doi.org/10.1016/j.marpolbul.2016.09.021
mailto:wangjf@lreis.ac.cn
http://dx.doi.org/10.1016/j.marpolbul.2016.09.021
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/marpolbul


Fig. 1. Approximate position of the study area (circle of the left plot) and distribution map of monitoring sites.
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unbiased estimation if the study area of interest approximately follows
the independent identical distribution. Model-based inferencemethods
provide more efficient estimation because they can guarantee an unbi-
ased and optimal estimation, as both the spatial autocorrelation of tar-
get variables and minimum estimation variance are taken into account
(Mishra et al., 2010; Thompson and Kolka, 2005). However, the homo-
geneous assumption for the survey region using this type of method
strongly violates the stratified distribution in the real world and there-
fore hinders accurate assessment.

Non-homogeneity exists in a variety of natural phenomena and geo-
physical environments (e.g., moisture of soil, forest community) and is
also inherent in estuary pollution because of complex physical and bio-
chemical processes. Coastal water is affected by the impact from the
land and sea, and because of hydrological and hydrodynamic condi-
tions, changes within a small spatial scale can be substantial. In other
words, it is a heterogeneous region (Hu, 1995). Wang et al. proposed
Fig. 2. Concentration (mg/L)map of nitrate (above) and phosphate (below) from2011 to 2013.
maximum and minimum concentrations are given in the legend.
the mean of surface with heterogeneity (MSN) method, which could
provide preferable solutions to the non-homogeneous area and yield
an optimized linear unbiased mean estimation (Wang et al., 2010a).
Partition would be a reasonable way to divide a nonhomogeneous re-
gion into sub-areas that could be treated approximately as homogenous
pieces. For the partition methods, different empirical or mathematical
statistical approaches are applied according to various study targets
(e.g., evolution stage, biological environment, nutrient salt, sediment-
based and cluster-analysis-based estuary stratification) (Liu et al.,
2011; Zhu et al., 2008). In this paper, a new assessment system is intro-
duced and applied to reduce uncertainty regarding the nutrient
pollutant's mean concentration. A hybrid-distance-based SOFM cluster
method was adopted to stratify the Yangtze estuary. Then, the MSN
method was used to calculate the mean pollutant concentration for
each element for the whole study area. The results from the commonly
used methods, block Kriging (BK) mean estimation (Kern and Coyle,
Red color represents high concentration; light blue color represents low concentration. The



Table 1
Sample data from 2011 to 2013.

Nitrate (mg/L) Phosphate (mg/L)

Year Max Min Mean CV (%) Max Min Mean CV (%)
2011 2.9521 0.0288 0.9418 78.67 0.1163 0.0011 0.0407 82.44
2012 2.4067 0.0060 0.8600 85.57 0.1806 0.0008 0.0395 84.69
2013 2.6004 0.0078 1.0818 81.29 0.0898 0.0004 0.0324 76.98
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2000), stratified sampling (ST) inference, and simple random sampling
(SS) inference, were compared to those of MSN to determine if MSN is a
preferable way to estimatemean concentrations ofmarine pollutants of
estuary.

2. Data and methodology

The Yangtze estuary, located between Shanghai and Jiangsu in the
most important economic area of China's east coast, provides the re-
gional industrial and agricultural water sources, ecological character,
and navigation, as well as pollution discharge. The estuary is 167 km
long and is trumpet-shaped. The width of the narrow section is
5.6 km, while the wide mouth spans up to 90 km. Data were provided
by East China Sea Marine Environmental Monitoring Center and were
collected each season. Monitoring indicators cover a broad range of pa-
rameters, such as pH, dissolved oxygen (DO), chemical oxygen demand
(COD), phosphate (PO4-P), nitrate (here we refer to as nitrate nitrogen
NO3-N+, nitrite nitrogen NO2-N+, and ammonia nitrogen NH3-N),
temperature, salinity, petroleum, mercury (Hg), copper (Cu), lead
(Pb), cadmium (Cd), arsenic (As), and chlorophyll. We used the sample
data for August from the years 2011 to 2013 and considered only two
main contaminants, nitrate and phosphate. According to China's nation-
al criterion, GB17378.4-2007, specifiedmethods to evaluate the concen-
tration of nitrate nitrogen, nitrite nitrogen, and ammonia nitrogenwere
Fig. 3. Stratification result of nitrate and phosphate from 2011 to 2013. The stratum near the riv
the remaining part is a stratum with medium concentration.
the Zn-Cd reduction method, naphthyl ethylenediamine
dihydrochloride spectrophotometric method, and hypobromite oxida-
tion method. The study area and the distribution of sample sites are
shown in Fig. 1. The total numbers of samples for August for years
2011 to 2013 were 101, 100 and 102, respectively.

2.1. Self-organizing feature map (SOFM)

The SOFMwaspresented byKohonen (Kohonen, 1998) and is an un-
supervised clustering method that organizes the input data through a
self-learning procedure achieved by competitive learning. The differ-
ence between SOFMand a general neural network is that SOFM also ad-
justs the weight of adjacent neurons next to winner neurons. The
underlying theory is based on the inherent topological structure exhib-
ited by the human brain. The result is that the input vectors next to each
other will acquire a similar topological structure in terms of the output
layer.

It is advantageous to divide the study area into several sub-areas so
that the dispersion variancewithin a stratum is small but the difference
between sub-areas is large. In this study, a hybrid distance based on the
SOFM clustering method is used to stratify the study area (Jiao et al.,
2011). Hybrid distance refers to spatial distance and attribute distance.
The equation is defined as follows:

Dij ¼ wsD
Sð Þ
ij þwaD

Að Þ
ij ð1Þ

whereDij is the hybrid distance,Dij
(s) represents spatial distance andDij

(A)

is the attribute distance, andws andwa refer to theweight for space and
attribute, respectively.

The advantage of using the hybrid distance is to provide a balance
between spatial distance and attribute distance. This approach attempts
to enhance the cohesion in the attribute domain and ensure continuity
ermouth has high concentrations, the stratum at the open sea has low concentrations, and



Table 4
Parameters of semi-variograms of phosphate concentration from 2011 to 2013.

Time Stratum Nugget (C0)
10−3

Sill (C0 + C)
10−3

C0/(C0 +
C) %

Range Variance
10−2

2011 Global 0.2330 2.2860 10.2 164,700 0.102
Stratum1 0.0001 0.0643 0.2 16,500 0.015
Stratum2 0.0780 0.8070 9.7 149,000 0.024
Stratum3 0.0012 0.1814 0.7 14,200 0.007

Table 3
Parameters of semi-variograms of nitrate concentration from 2011 to 2013.

Time Stratum Nugget
(C0) 10−3

Sill
(C0+C) 10−3

C0/(C0+C)
%

Range Variance
10−2

2011 Global 0.2140 1.4650 14.6 170,882 0.60
Stratum1 0.0000 0.0040 0.0 36,963 0.13
Stratum2 0.0480 0.1371 35.0 154,600 0.08
Stratum3 0.0000 0.1203 0.0 13,600 0.003

2012 Global 0.2178 0.9115 23.9 139,172 0.54
Stratum1 0.0000 0.0244 0.0 21,053 0.04
Stratum2 0.0280 0.0723 38.7 123,100 0.22
Stratum3 0.1157 0.2807 41.2 38,319 0.03

2013 Global 0.0930 1.4790 6.3 133,100 0.77
Stratum1 0.0000 0.0156 0.0 35,982 0.01
Stratum2 0.0137 0.3533 3.9 118,879 0.14
Stratum3 0.0042 0.1693 2.5 34,513 0.09
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in the spatial domain. The implementation procedure for the hybrid-
distance-based SOFM involves the following steps:

1) Data standardization. Because hybrid distance involves two aspects,
spatial and attribute domain, the space coordinates are treated as a
special variable. The measurement units for the variables are differ-
ent, so standardization is necessary.

yi ¼
y0i−ymin

ymax−ymin
ð2Þ

2) Initiating theweight vector. The output node is assigned aminor but
random number, no N0.5, as the initial weight wji≤0.5, i=1,⋯p.
The initial neighborhood is defined as Nc(0), the learning rate as
η(0), and the maximum iterations as T; additionally, t = 0.

3) Calculating the bestmatching node. After initialization, an input vec-
tor Y(t)={y1(t),y2(t)⋯yp(t)} is chosen; then, the node that has the
minimum hybrid distance between the input vector and output
weight vector is identified. Subsequently, the weights of the winner
node and its adjacent nodes are adjusted according to equation (4),
and the learning rate η(t) and neighborhood Nc(t) are updated ac-
cording to equations (5) and (6).

Y tð Þ−WC tð Þk k ¼ min Y tð Þ−W j tð Þ�� ��� �hybrid ð3Þ

Δwj tð Þ ¼ η tð Þ y tð Þ−wj tð Þ� �
; j∈Nc tð Þ

0; j∉Nc tð Þ
�

ð4Þ

η tð Þ ¼ η 0ð Þ 1−
t
T

� 	
ð5Þ

Nc tð Þ ¼ INT Nc 0ð Þ 1−
t
T

� 	
 �
ð6Þ

4) The learning process is repeated until the iterations t ≥ T. As the
learning process approaches convergence, the learning rate will de-
crease to aminimum of zero, and the neighborhoodwill narrow to a
very small area.

2.2. MSN

Through stratification, a non-homogeneous area is divided into
smaller homogeneous sub-strata. A sub-stratum is a homogeneous
area that meets the stationary hypothesis. For a homogeneous stratum,
the mean value can be calculated by a weighted sample mean, and the
assigned weight must meet certain conditions (optimal and unbiased).
For a non-homogeneous area, the mean value can be calculated by a
weighted homogeneous strata mean. To estimate the global mean
with the MSN method, two steps are required: (1) the non-homoge-
neous surface dataset R is decomposed into a set of spatially homoge-
neous sub-strata Rh, and each subset surface is defined by y(s):

E y sð Þ s∈Rhj½ � ¼ C ð7Þ
Table 2
PD values and P values of nitrate and phosphate from 2011 to 2013.

Nitrate Phosphate

PD value 0.87 0.77 0.89 0.87 0.66 0.91
P value 0.00 0.00 0.00 0.00 0.00 0.00
The surface average over R is defined as:

YR ¼ R−1
Z
R

RhYhds ð8Þ

ah ¼ RhR
−1 ð9Þ

where ah is the area ratio of strata Rh, Yh is the average of each sub-stra-
tum and can be estimated by a weighted sample mean within the ho-
mogeneous strata Rh, yh is the unbiased estimation of Yh, and equation
(11) must be satisfied.

yh ¼
Xnh
i¼1

whiyhi ð10Þ

Xnh

i¼1

whi ¼ 1 ð11Þ

From the above, the surface average can be calculated as follows:

yh ¼ R−1
XH
h¼1

Rh

Xnh
i¼1

whiyhi ð12Þ

The concentration is the calculation of weight, which insures the
condition of equation (13) andminimizes themean squared estimation
error.

σR
2 ¼ E yR−YR

� �2 ð13Þ
2012 Global 0.4290 2.5880 16.6 188,100 0.112
Stratum1 0.0001 0.0370 0.3 24,745 0.065
Stratum2 0.0536 0.1637 32.7 16,384 0.003
Stratum3 0.0000 0.7244 0.0 15,917 0.014

2013 Global 0.0783 2.0153 3.9 207,163 0.062
Stratum1 0.0001 0.0339 0.3 32,000 0.005
Stratum2 0.0241 0.1162 20.7 50,000 0.008
Stratum3 0.0000 0.0481 0.0 8834 0.003



(a) Mean estimation result of nitrate

(b) Mean estimation result of phosphate

Fig. 4. Mean estimation result (lines of different colors represent different methods, the
corresponding point on the line represents the estimated mean for the year, error bars
for each point reflect the estimation error).
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3. Results and analysis

A pollutant concentration distribution map obtained by the interpo-
lation method is shown in Fig. 2. It is clear that the pollutant
(a) nitrate  
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Fig. 5. Standard deviation of estimati
concentration near Chongming Island and Hangzhou Bay, where
human activities are abundant, is higher than that of the open sea
areas. The map also shows high spatial heterogeneity for both nitrate
and phosphate. The statistical data are listed in Table 1, and the maxi-
mum concentrations for nitrate for years 2011 to 2013 are 2.95, 2.40,
and 2.60 mg/L, respectively, which is far beyond the fourth grade of
water quality according to GB3097-1997. Hangzhou Bay presents a sim-
ilar situation to the Shanghai estuary. For phosphate, the maximum
values are 0.11, 0.18, and 0.08 mg/L, respectively, all higher than the
standard value of 0.045 mg/L. This imbalance may occur because the
four sewage outlets of Shanghai are distributed on the southern passage
of the Yangtze estuary, where the pollutant concentration is distinctly
higher than in the other districts. Nantong in Jiangsu province is an in-
dustrially developed city, and there are six industrial parks in Hangzhou
Bay, which results in perennial pollution from the intensive sewage out-
lets (Liu et al., 2003; Sun et al., 2009).
3.1. Stratification result evaluation

The pollutants drift and evolve in the sea, and the contamination sit-
uation changes every year. To accurately estimate the concentration,
partition of themonitoring data is conducted every year. The SOFMpro-
cess produces several point clusters, but Yangtze estuary is represented
as a continuous surface. A Voronoi diagram can be used to obtain the
zoning polygons (Jiao et al., 2011), but it does not perform well near
the boundary; therefore, IDW is used here to obtain different zones ac-
cording to the aggregate result. The entire process was performed using
the software Matlab 7.8.0 and ArcGIS 10.1.

The area that contains all the sample data was divided into three
strata according to the SOFM clustering result, as shown in Fig. 3. The
yellow line shows the portion of the study area forwhich themean con-
centrationswere to be estimated. Themonitoringdata outside the study
area are only employed for stratification and variogram estimation;
they are not used for estimating the mean concentrations within the
study area. The stratum near the river mouth has a high concentration,
the stratum at the open sea has a low concentration, and the remaining
part is a stratum with medium concentration. As shown in the legends
of Fig. 3, darker color shades indicatemore serious pollution. In general,
the stratification boundary of nitrate is more stable than that of phos-
phate for the years 2011 to 2013. The stratification result can better rep-
resent the diffusion pattern of contamination every year. The most
(b) phosphate
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(a) nitrate of 2011                    (b) phosphate of 2011

(c) nitrate of 2012                   (d) phosphate of 2012
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Fig. 6. Standard deviations of estimation error of nitrate and phosphate by different methods after removing 3, 6, 9, or 12 sites from the monitoring data.
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polluted district is the estuary near Chongming Island, and the contam-
ination scope is different for nitrate and phosphate from 2011 to 2013.

In an optimum stratification, the variance within each stratum is as
small as possible, and the difference between strata is as large as possi-
ble. Since the aim of stratification is to estimate themean valuemore ac-
curately, it is necessary to evaluate the stratification result. GeoDetector
(Wang et al., 2010b) was initially proposed to detect the contributed en-
vironmental risk factor for a certain health effect (i.e., mortality rate for a
particular disease). It also can be used to detect the stratification effect. In
GeoDetector, the power of determinant (PD) value is defined as follows:

PD ¼ 1−
1

nσ2

XL

h¼1
nhσ2

h ð14Þ

where σh
2 represents the variance of each sub-stratum and σ2 is the var-

iance of the entire study area, nh is the number of samples in the sub-
stratum, and n is the total sample number. A satisfactory division is
one in which the variance for each sub-stratum σh

2 is close to 0 and the
PD value approaches 1. The calculations were performed using free soft-
ware downloaded from www.sssampling.org. The results are listed in
Table 2. The PD values from 2011 to 2013 are 0.87, 0.77, 0.89 for nitrate,
and 0.87, 0.66, and 0.91 for phosphate, respectively. From the PD value,
one can observe that the stratification carried out by SOFM is good. In
general, 2013 is associated with the best stratification result, and the
PD value for 2012 is relatively low. This result may arise because the dis-
persion variance and theweight for stratum1 is higher than for the other
years for this stratum. The newly updated Geo-detector (Wang et al.,
2016) can also test the significance of the stratification (P-values in q sta-
tistic). A P-value b 0.01 represents a statistical significance at the α =
0.01 level. From Table 2, it can be observed that the P-values of all strat-
ifications are equal to approximately 0, which demonstrates that the
stratified heterogeneity is significant and that the stratifications are
reasonable.

3.2. Experimental variograms

The theoretical basis for Kriging is the correlation within a certain
distance; a semi-variogram is used in geostatistics tomodel this correla-
tion. The semi-variogram is defined under the condition of second-
order stationary behavior; it reflects the spatial variance of a regional-
ized variable within a distance h. Optimal (model with a least residual
sum of squares RSS and maximum coefficient of determinant R2) local
and global experimental variograms (variogrammodels within and be-
tween strata) of nitrate and phosphate for each year were fitted using
the Gaussian model and are listed in Tables 3 and 4.

The nugget of the semi-variogram is caused by randomvariation and
the ratio of nugget to sill can reflect the degree of spatial correlation. A
ratio larger than 75% suggests that variability of the target variable is
caused by random factors and the spatial correlation is weak, while a
ratio b25% indicates strong spatial correlation of the target variable.
When the ratio is between 25% and 75%, moderate spatial correlation
is suggested. The ratios for nitrate and phosphate are listed in Tables 3
and 4. The ratio of nugget to sill for nitrate in stratum 2 in 2011, for ni-
trate in strata 2 and 3 in 2012, and for phosphate in stratum 2 in 2012
are between 25% and 75%; i.e., they exhibitmoderate spatial correlation.
Except for the above strata, all the remaining strata have ratios below
25%, indicating strong spatial correlation.

The variances of nitrate and phosphate in the study area and the
strata are also listed in Tables 3 and 4, respectively. The variance of
each stratum is smaller than that of whole area, suggesting that the
stratification is efficient.

3.3. Mean value estimation and estimation result evaluation

Mean values for the study area (within the yellow lines) based on
MSN theory were calculated using programs written in the R language.
The estimation results of the mean values obtained by MSN, BK, SS and
ST are shown in Fig. 4. Error bars were used to visualize the estimated
meanvalues and the correspondinguncertainty. Lines of different colors
represent differentmethods, and the points on the lines are the estimat-
edmeans. The SS inferencemean value is the highest comparedwith ST
inference, BK and MSN methods every year. For nitrate, 2012 has the
lowest and2013has the highestmean value in the three years, implying
that the water quality improved from 2011 to 2012 and dropped, to a
certain extent, in 2013. For phosphate, 2013 is associated with the low-
est mean value. For different methods, the calculated mean values of
phosphate do not show a significant difference except for the simple
sampling inference, which still yields a relatively high mean value.
Since the actual mean value is unknown, the performance of sea surface
pollutant mean estimations by different methods was evaluated by the
standard deviation of estimation error. The error bars in Fig. 4 span one
standard deviation of estimation error above and below themean point
and indicate the annual degree of error. From the figure, it can be ob-
served that the MSN method performs better than other methods.

To compare the performance of the different methods more clearly,
the standard deviations of estimation error for thedifferentmethods are
shown in Fig. 5. In general, for both nitrate and phosphate, the MSN
meanestimationmethod performsbetter than the othermethods, as in-
dicated by a lower estimation error. The estimation error for ST of ni-
trate in 2011 and 2012 is close to that of the MSN method, followed
by BK. The simple sampling inference method has the highest estima-
tion error. Compared with ST inference, MSN reduced the standard de-
viation of estimation error for nitrate by 9%, 11%, and 48% from 2011 to
2013. For phosphate, MSN reduced the standard deviation estimation
error by 30%, 27%,and 46% from 2011 to 2013. Compared with BK,
MSN reduced the estimation error for nitrate by 57%, 53%, 56% and for
phosphate by 41%, 54%, 60% from 2011 to 2013.

To test the performance of MSN further, 3, 6, 9, or 12 sites were ran-
domly removed from the monitoring data for the three years, and the
means and standard deviations of estimation errors were calculated
for the remaining data by the different methods. The standard devia-
tions of estimation error result are plotted in Fig. 6. For each method, a
reduction of the number of monitoring sites is accompanied by an in-
crease in the standard deviation of estimation error, although these in-
creases were relatively small. The performances of the different
methods are similar to the results with all monitoring data. The MSN
is still superior to the other methods in reducing the standard deviation
of the estimation errors. The results demonstrate that theMSNmeanes-
timation method can reduce the estimation error effectively compared
with traditional and frequently used methods, mainly because it takes
the sea-surface non-homogeneity into account while simultaneously
providing the best linear unbiased estimation.

4. Conclusion

In the present research, the sea-surface non-homogeneity and inter-
dependence of observed data were studied thoroughly to estimate the
nitrogen and phosphate concentrations of the study area of the Yangtze
estuary. To make an accurate estimation, stratification was conducted
each year for both pollutants. After stratification, experimental
variogrammodels of thewhole study area and each stratumwerefitted.
With the stratification result and experimental variogram models in
hand, MSN theory could then be used to estimate the mean values of
the pollutant concentrations.

To evaluate the performance of MSN, the estimation results were
compared with those of traditional and frequently used methods. For
both nitrate and phosphate, the MSN mean estimation method per-
formed better than the other methods, with the lowest standard devia-
tion of estimation error. The estimation ability of thesemethods, gauged
by their order of estimation error, is MSN N ST N BK N SS. The standard
deviations of estimation error for MSN were 9%, 11%, and 48% less
than those for ST from 2011 to 2013 for nitrate. Likewise, MSN reduced

http://www.sssampling.org
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the standard deviation estimation error for phosphate by 30%, 27%, and
46% from 2011 to 2013. Compared with BK, MSN reduced 57%, 53%, and
56% of the estimation error for nitrate and 41%, 54%, and 60% for the es-
timation error for phosphate from 2011 to 2013. The use of different
sample sizes also supports this conclusion. Therefore, the MSN method
is more reliable for estimatingmean pollutant concentrations when the
sea surface is non-homogeneously spatially stratified.
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