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Abstract: Space-time interpolation is widely used to estimate missing or unobserved values in a
dataset integrating both spatial and temporal records. Although space-time interpolation plays a key
role in space-time modeling, existing methods were mainly developed for space-time processes that
exhibit stationarity in space and time. It is still challenging to model heterogeneity of space-time data
in the interpolation model. To overcome this limitation, in this study, a novel space-time interpolation
method considering both spatial and temporal heterogeneity is developed for estimating missing
data in space-time datasets. The interpolation operation is first implemented in spatial and temporal
dimensions. Heterogeneous covariance functions are constructed to obtain the best linear unbiased
estimates in spatial and temporal dimensions. Spatial and temporal correlations are then considered
to combine the interpolation results in spatial and temporal dimensions to estimate the missing
data. The proposed method is tested on annual average temperature and precipitation data in China
(1984-2009). Experimental results show that, for these datasets, the proposed method outperforms
three state-of-the-art methods—e.g., spatio-temporal kriging, spatio-temporal inverse distance
weighting, and point estimation model of biased hospitals-based area disease estimation methods.

Keywords: spatio-temporal interpolation; heterogeneity; spatio-temporal covariance; clustering

1. Introduction

Evolving patterns of geographical phenomena are usually modeled as spatio-temporal processes
depicted by space-time data. Nearly all instrumental space-time data are influenced by missing
data [1,2]. Before data analysis, missing data must be well handled. To treat missing data, two common
approaches are available. One is to exclude periods with missing values from data analysis, and the
other is to ignore the missing data based on the tacit assumption that the data represent one continuous
series [3,4]. However, these approaches may disregard useful information and bias the analysis
results [2]. To overcome these limitations, a number of interpolation methods have been proposed to
estimate missing observations in space-time data. Most of these methods assume that the interpolation
of space-time data can be reducible to a sequence of spatial interpolations [5]. However, applying
spatial interpolation methods to space-time data usually leads to the loss of valuable information
in the temporal dimension [6]. On that account, space-time interpolation methods that consider
both spatial and temporal dimensions have been paid more attention and have been widely used in
geoscience [7-9].

Currently, a series of space-time interpolation methods have been developed based on spatial
interpolation methods—i.e., space-time inverse distance weighting methods, space-time kriging methods,
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and regression-based methods [10-12]. Although space-time interpolation plays a key role in space-time
modeling, existing methods mainly assume that space-time processes exhibit stationarity in space and
time. However, the second order stationarity (mean and variance of a process are all constants), even the
first order stationarity (mean of a process is constant) is usually not satisfied in practice [13-15]. Owing
to the heterogeneity of space-time data, the accuracy of the interpolation results obtained by existing
methods is still unsatisfactory. Therefore, a space-time interpolation method considering both spatial and
temporal heterogeneity is developed for treating missing data. First, heterogeneous covariance functions
are constructed for both spatial and temporal dimensions, and the best linear unbiased estimates in spatial
and temporal dimensions are obtained. Spatial and temporal correlations are then considered to combine
the interpolation results in spatial and temporal dimensions to estimate the missing data. The effectiveness
and advantage of the proposed method are empirically evaluated in terms of an annual temperature and
precipitation dataset spanning 1984 to 2009 in China.

The remainder of this paper is organized as follows. In Section 2, the related works of spatio-temporal
interpolation are reviewed, and a new strategy is developed. In Section 3, the proposed space-time
interpolation method is represented. In Section 4, two experimental datasets are selected to demonstrate
the validity of the proposed method. In Section 5, conclusions are drawn at the end of the paper.

2. Spatio-Temporal Interpolation: Related Work and Our Strategy

Existing methods for estimating missing data can be roughly divided into three types: regression
based, inverse distance weighting (IDW), and kriging methods. In the following, details of these
methods will be reviewed.

2.1. Related Work

Regression-based methods construct a regression function to estimate missing data by integrating
surrounding station records and relevant information as explanatory variables. The conventional
methods—i.e., simple and multiple regression methods—do not consider spatial autocorrelation.
To overcome this limitation, some spatial regression models have been developed—e.g., spatial
lag and spatial error models [16]. However, spatial heterogeneity (first-order or second-order
non-stationarity) and temporal dimension are not considered by these spatial regression models.
Although geographically weighted regression (GWR) and spatio-temporal geographically weighted
regression (STGWR) are able to construct a regression function for each location [17-19], the regression
function between missing data and explanatory variables cannot be constructed. Therefore, GWR
and STGWR are unsuitable for estimating missing data. A spatial regression test (SRT) estimates the
missing data in the station of interest by using the neighboring stations [20,21]. For each neighboring
station, a regression estimate (x; = a; + b;y;) is calculated. The values of missing data are calculated as
weighted averages of the estimates. Although SRT has the potential to consider spatial heterogeneity,
temporal heterogeneity cannot be considered, and there is no objective function for the best linear
unbiased estimates [5].

The inverse distance weighting (IDW) methods are also widely used for estimating missing data.
The IDW methods weight the values at neighboring stations according to the inverse of the distances
separating the locations. The IDW methods simply assume that neighboring stations are related to
the station of interest by their proximity to the station of interest. Some variants of IDW were also
developed by using different weighting schemes [22,23]. Some studies attempted to integrate time and
space dimensions in IDW, and spatio-temporal IDW (STIDW) methods were proposed [24]. STIDW
first defined a three-dimensional space-time distance and then applied the space-time distance in IDW
to estimate the missing values. Although the IDW and STIDW methods are easy to implement, they
have difficulty obtaining nonbiased estimates.

Kriging and its variants have also been applied to estimate missing data [25-27]. These methods
are able to obtain unbiased predictions with minimal variance. To consider the temporal dimension,
spatio-temporal kriging methods have also been developed [28]. The derivation of the spatio-temporal
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covariance function plays a key role in spatio-temporal kriging methods. There are two kinds of
spatio-temporal covariance functions: separable and non-separable models [25,29]. In the separable
model, the spatio-temporal covariance function is treated as either a sum or product of separate spatial
and temporal covariance functions [30]. In the non-separable model, the spatio-temporal covariance
function is treated as a non-linear, multiplicative version of the spatial and temporal covariance
functions [6,10,31-33]. However, spatio-temporal kriging methods assume that a space-time process
has a constant mean and variance (i.e., second order stationarity) in space and time [13,15]. To overcome
this limitation, a point estimation model of biased hospitals-based area disease estimation, named
P-Bshade, is developed [5,34]. P-Bshade directly calculates the covariance of the historical observation
data to determine the weighting coefficients of surrounding observation stations. The P-Bshade
method is mainly designed for spatial interpolation; thus, the temporal dimension is not considered to
estimate the missing data.

2.2. A Critical Analysis of Existing Work and Our Strateqy

Based on the above analysis, the performance of existing methods can be summarized as follows:

(a) Currently, missing data in a spatio-temporal dataset are mainly estimated by using spatial
interpolation methods—e.g., spatial regression models, SRT, IDW, kriging, and P-Bshade.
The neglect of time dimension will lead to the loss of valuable information in the estimation of
missing data; and

(b) Although a few spatio-temporal interpolation methods are currently available for estimating
missing data—e.g., STIDW and spatio-temporal kriging—the heterogeneity (i.e., second-order
non-stationarity) of spatio-temporal data should be further considered [35].
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Figure 1. The flowchart of this method.
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On that account, a new strategy should be developed. In this study, we assume that both spatial
and temporal distributions of the spatio-temporal data are non-homogeneous (i.c., second-order
non-stationarity). Motivated by the separable spatio-temporal covariance function, the space-time
variable of interest is treated as a sum of independent spatial and temporal non-stationarity
components. Heterogeneous covariance functions are then constructed for both spatial and temporal
dimensions, and objective functions are maximized to obtain the best linear unbiased estimates
in spatial and temporal dimensions. Finally, spatial and temporal correlations are considered to
combine the interpolation results in spatial and temporal dimensions to estimate the missing data.
The performance of the space-time interpolation operation will be evaluated by using cross-validation.
In Figure 1, the strategy proposed in this study is shown. In the following, the spatio-temporal
interpolation method will be represented.

3. Hybrid Interpolation Method for Heterogeneous Spatio-Temporal Data

Based on the strategy introduced in Section 2.2, spatial and temporal interpolations will be
performed. A weighted sum of observations is used to obtain unbiased and minimal error variance
estimates of missing data. To calculate the weights, heterogeneous covariance functions are constructed
for spatial and temporal dimensions.

3.1. Heterogeneous Covariance Functions for Handling Space-Time Heterogeneity

As elaborated in Figure 1, we first check the space-time data to tag the unsampled space-time
position. Then, a hierarchical clustering method—REDCAP (regionalization with dynamically
constrained agglomerative clustering and partitioning) was employed to partition the study
area into homogenous spatial regions based on the average observations at each station [36,37].
The REDCAP method consists of two steps: spatial contiguity constrained hierarchical clustering and
spatially-contiguous tree partitioning. In the first step, a hierarchical clustering method is first used
to construct a spatially contiguous tree. In this study, average linkage is selected as the hierarchical
clustering method. The spatially-contiguous tree is then partitioned into a number of sub-trees by
minimizing an objective function. The objective function is defined as the total heterogeneity of all
regions, represented as:

k n;
He= >0 (x5 - %)) @
i=1j=1
where k is the number of regions, n; is the number of objects in ith region, x;; is the attribute value of
the jth object in ith region, and ¥; is the mean attribute value of the ith region.

After the homogenous sub-regions are obtained, the missing values are interpolated in the
temporal dimension. The m temporal neighbors of the missing value will be generated at first.
As shown in Figure 2, let ty be a missing value in region k; at the time layer Ty, m most correlated
time layers of T are determined based on region k;. In detail, the pair-wise objects for calculating the
correlation between time layer T and T is identified as observed records in k; with same location.
Then, at each correlated time layer of T, the observed record with the same location of ¢ is identified
as a temporal neighbor of ty. For example, in Figure 2, if {T1, Ty, ..., T},} are the m most correlated time
layers of T, the m temporal neighbors of ty are formed by {1, ¢, ..., t;}. In the temporal dimension,
the estimated value (fo) of missing record # is calculated according to Equation (2):

~ m

to = ijl Pjtj 2)
where t; denotes the jth temporal neighbor of missing record t; in temporal dimension, and ¢; denotes
the corresponding contribution weight of ¢;. The missing records can be calculated by the other records
of missing observation stations using Equation (2). To ensure that fj is the unbiased estimate for the
missing records, the following relationship should be satisfied:

E(to) = E(fo) ®)
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where t represents the real value of missing value, E(tg) represents the statistical expectation of t( in
temporal dimension. Substituting Equation (2) into Equation (3), Equation (4) can be rewritten as:

E(to) = E(Z;il @jt;) 4)

In view of temporal heterogeneity, we introduce a parameter of ratio 4; calculated according to
Equation (5). The parameter 4; is used to represent the heterogeneity between two time layers:

aj = E(t;)/E(to) ®)
In Equation (5), if E(t;) = 0 or E(fo) = 0, a small positive constant (e.g., 0.0001) is added to E(t;) or
E(tp). Combining Equations (4) and (5), the unbiased estimates of ¢; can be determined by minimizing
the variance E (f, — to)zaccording to Equation (6).
argmin(ffz0 — argminE (fy — to)°
¢ ¢ (6)
st 2 gjap=1
With the restrictions of Equation (6), the minimized estimation error variance in temporal
dimension can be represented as follows:

m m m m
0’520 = (72 + Zj:l Zg:l 47]'4)3(:(1’]', i’g) — 22]’:1 ¢]C(t], t()) + 2U(2j:1 Pia; — 1) (7)

where v is a Lagrange multiplier. Furthermore, we can calculate the weight ¢; based on Equation (7)
and obtain the estimates of unsampled data based on Equation (2).
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Figure 2. Interpolation in temporal dimension (blue dots represent observed records; red dotted lines
are used to represent the spatial relationships).

After the interpolation in the temporal dimension is finished, the interpolation in the spatial
dimension will be implemented similar to that in the temporal dimension. In each homogenous
sub-region, the largest correlated 7 stations are selected to interpolate the missing value in a station,
and the correlation between two stations is calculated based on the observed time series. The estimated
value of missing value 1) is calculated according to Equation (8):
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A n

Jo= Wiy )
where y; denotes the observed record in station 7 at the same time layer of the missing value v, w;
denotes the corresponding contribution weight of y;, and 7y is defined as an unbiased estimate for the
missing value . Similarly to Equations (6) and (7), the minimized estimation error variance in spatial
dimension can be represented as follows:

n
(7;0 =0 —1—21 le 1wwkC Vi Yk) — Z wiC(yi,Yo) +2y(2i:l wib; — 1) 9)
where y is a Lagrange multiplier. Furthermore, we can calculate the weight w; based on Equation (9)
and obtain the estimates of the missing values based on Equation (8).

3.2. Estimating Spatio-Temporal Missing Data by Combining Both Spatial and Temporal Information

To calculate the missing value f( in region k; at time layer Ty in temporal dimension, m most
correlated time layers and m temporal neighbors are first generated based on the method introduced
in Section 3.1. In Equation (7), minimizing (szo with respect to weights ¢; (j=1,2, ..., m) and taking the
partial derivative with respect to ¢;, Equation (7) can be expanded into a matrix equation as follows:

[ C(t1, 1) Cltitw) a1 | [ o1 | [ Cltito) |
C(t]',tj/) _ . (10)
C(tm/ tl) T C(tm/ tm) Am Pm C(tm; tO)
| ay am 0 1L v | | 1 |

where v is also the Lagrange multiplier, C (tj, t]-/> is the covariance between the jth time layer and
the j’th time layer calculated based on the records in region k;, and pair-wise objects for calculating
C (tj, t]-/> are identified as records in k; with the same location. C (tj, to) is the covariance between the
jth time layer and time layer Ty with missing values. The calculation of C (t;, to) is similar to that of

C (tj, t]v> ; however, only observed records are involved to calculated the covariance. a; denotes a ratio
between time layer T; and time layer T with missing values (calculated by Equation (5)).

Then, to calculate the missing value vy in the region k; at time layer T in the spatial dimension, the
largest correlated 7 stations are first selected based on the method introduced in Section 3.1. As shown
in Figure 3, the red star is the station with the missing value yy. The green stars represent the largest
correlated # stations of the station with the missing value (n = 5). The red dots represent the temporal
neighbors of the missing value, and the green dots represent other observed records. In Equation (9),
minimizing (Tygo with respect to weights w; (i =1, 2, ..., n) and taking the partial derivative with respect
to w;, Equation (9) can be expanded into a matrix equation as Equation (11):

[ Cyny) o Clynyn) b w [ Cy1,y0) ]
C(yn,y1) C(Yn,yn) bn Wy C(yn yo)
B b, ol x|l [ 1 |

where y denotes the Lagrange multiplier, C (y;,y) on the left-hand side of Equation (11) is the
covariance between the station i and the station i’, calculated based on the time series of these two
stations. C (y;,yo) on the right-hand side of Equation (11) is the covariance between the station i and
station with missing value, calculated based on the observed time series of these two stations. b; denotes
a ratio between station i and the station with the missing value, calculated by E(y;)/E(yo), where E(y;)
represents mean value of the time series at station i. The matrix consisting of the contribution weights
w; can be calculated by Equation (11).
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Finally, the estimated values in the spatial and temporal dimensions should be integrated to
obtain the overall estimated value Y;; of the missing value. There are mainly two kinds of space-time
geostatistical models, i.e., the separable model and non-separable model [29]. The separable model is
easy to implement; however, the space-time interaction may be not well considered. Although the
non-separable model is able to consider the space-time interaction, in theory, the construction of the
non- separable model for the non-stationarity space-time variable is very difficult [30]. In this study,
spatial and temporal dimensions are both considered to calculate the interpolation results in spatial or
temporal dimensions, e.g., the solution of Equations (10) and (11). Thus, we think that, to some degree,
space-time interaction is considered in spatial and temporal dimension interpolation. Therefore, the
overall estimated value Y;; is defined as a weighted sum of estimated values in spatial and temporal
dimensions, represented as follows:

Yij = Afjp + BEO (12)

where i is the station number, j is the time series number, A is the weight in spatial dimension, and B is
that in temporal dimension (A + B = 1). In this study, the weights in spatial and temporal dimensions
are calculated according to the correlation coefficient, represented as follows:
n m

R(yi,y0) 2 R(tj o)
A i= j=1

BT /

- ,A+B=1 (13)

where 1 represents the number of spatial neighbors and m represents the number of temporal neighbors.
R(yi, yo) represents the correlation between the missing value and its spatial neighbors, measured
by the correlation coefficient between the observed time series of station i and that of the station
with missing value yo. R(¢;, to) represents the correlation between the missing value and its temporal
neighbors, measured by the correlation coefficient between time layer T¢ and T; calculated based on
region k; (tj€k;, to €k;). From Equation (13), it can be found that if the missing value is more correlated
with its spatial neighbors (temporal neighbors); thus, the weight in the spatial dimension (temporal
dimension) will be heavy. After the weights in the spatial and temporal dimensions are calculated by
solving Equation (13), the final estimation results of missing data can be obtained by Equation (12).

Figure 3. Interpolation in the spatial dimension.
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4. Experiments and Results Analysis

The proposed interpolation method is implemented in MATLAB 2014b. The average annual
temperature and precipitation data from 554 meteorological stations during the period from 1984
to 2009 is selected to validate the proposed interpolation method. These experimental data are
provided by the China National Meteorological Information Center (CNMIC). In these datasets, some
temperature and precipitation records are missing. In Figure 4, the numbers of missing records in
different years are shown. One can find that the number of missing data decreased sharply around
1995, gradually reaching a stable level around that year. The maximal number of missing records is 30
(in the year 1984), and the minimal number of missing records is eight (in the year 2001 and 2002).

35 T T T T T

N N
o (92}
T T
1 1

Number of Missing Data
o

1985 1990 1995 2000 2005 2010
Year

Figure 4. The number of missing records from 1984 to 2009.

As illustrated in Figure 5, the whole study area including 554 observation stations are partitioned
into different homogenous sub-regions. Dots of identical color belong to the same sub-region.
The number of sub-regions is determined by REDCAP, which is set as 12 for temperature observations
and eight for precipitation observations. The number of clusters is determined based on the prior
knowledge (e.g., climate zones in China) and the clustering validity index (L-method). The number
of neighboring stations is determined based on the existing study and clustering results. Based on
experiments, Xu et al. [5] suggested that the number of neighboring stations can be set from 5-15.
It is also known that stations are similar to one another in the same cluster and are dissimilar to
stations in different stations. Thus, the number of neighboring stations cannot be larger than the size
of the smallest cluster. On the basis of these principles, the number of spatial neighbors 7 is set to 10.
Hubbard et al. [20,21] suggested that the number of temporal neighbors can be set to about half of the
research period. In this study, the research period is 26, therefore the number of temporal neighbors
m is also set to 10.

Particularly, the interpolation results of other three widely used methods (spatio-temporal kriging
with product-sum covariance method [6], denoted as STKriging; spatio-temporal inverse distance
weighting, denoted as STIDW; and point estimation model of biased hospital-based area disease
estimation, denoted as P-Bshade), and this proposed method, i.e., space-time heterogeneous covariance
method (denoted as STHC) are compared to evaluate the accuracy. To implement the STKriging, a
data pre-process operation is first implemented to guarantee second-order stationarity. In the temporal
dimension, no obvious trend or periodicity is found. In the spatial dimension, the trend is estimated
in each spatial location by using a moving window, and a local trend estimation procedure with an



ISPRS Int. ]. Geo-Inf. 2016, 5, 13 9 of 14

optimum window size proposed by Pelletier, et al. [38] is employed to estimate the trend. In each
window, the polynomial of order one is used to model the trend. In addition, STKriging and STIDW are
also performed in each sub-region obtained by the clustering method, denoted as STKriging-Partition
and STIDW-Partition. To assess the performance of different interpolation methods, annual station
records in China from 1984 to 2009 were estimated by leave-one-out cross-validation [39]. Each
observed record is first removed, and then the estimated value is compared with the true observed
value. Three indicators, i.e., mean absolute error (MAE), root mean square error (RMSE), and coefficient
of determination (r2), are calculated to evaluate the accuracy of the interpolation results. The statistical
results are shown in Table 1.

. . . L " . . .
70 80°E S0°E 100 110 120 130% 140 vE 20 S0E 100 110% 120 130 140

(a) (b)
Figure 5. Homogenous sub-regions of (a) temperature and (b) precipitation.

As listed in Table 1, it can be found that the accuracy of our method is obviously higher than that of
the other methods. For temperature and precipitation data, the MAE and RMSE values of our method
are significantly lower than those of STKriging, STIDW, STKriging-Partition, and STIDW-Partition
methods, showing great improvement in interpolation accuracies. The interpolation accuracy of our
method is also higher than that of P-Bshade method, even though the improvement is less remarkable.
The values of MAE and RMSE per year are shown in Figure 6. For the temperature data, the MAE error
of the proposed method is significantly lower than other methods over the years, as well as RMSE. For
the precipitation data, it also can be found that the proposed method has the least MAE and RMSE
error. However, two serious errors appeared in the years 1985 and 2000.

Table 1. Experimental results of different interpolation methods.

TEM PRE
Methods MAE RMSE 2 Residual MAE RMSE 2 Residual
°O) °O) Autocorrelation  (mm) (mm) Autocorrelation
STKriging 143 2.20 0.990 0.25 19.93 38.56 0.864 0.77
STIDW 2.08 2.76 0.926 0.28 30.31 52.27 0.659 0.80
STKriging-Partition 1.13 1.45 0.994 0.23 19.13 33.39 0.879 0.72
STIDW-Partition 1.63 2.15 0.990 0.27 27.07 47.37 0.709 0.76
P-Bshade 0.41 0.50 0.996 0.25 18.69 35.20 0.870 0.68
STHC 0.23 0.33 0.998 0.20 17.26 31.64 0.909 0.63

In Figure 7, scatterplots between observed values and the estimated values for each method are
shown. The horizontal axis denotes the estimated value, and the vertical axis denotes the observed
value. The blue dots depict the scatter of estimated values and observed values, and the red line
represents the line y = x. If the estimated values are similar to the observed values, the blue dots should
be close to the red line (y = x). It can be seen that, compared with other five methods, the estimated
value by our method is much closer to its observed value—i.e., closer to the red reference line. For all
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the six methods, the interpolation results of the temperature data are all better than the results of the
precipitation data.

The average interpolation error at each station is plotted in Figure 8. As illustrated in Figure 8a,
the error distribution of temperature data is relatively uniform, where Southwest and Northwest China
are significantly higher than the eastern region, mainly because the observatory stations in Western
China are scarcer. In contrast to the precipitation data, one can see that the errors in Southern China are
generally higher than those in Northern China, mainly due to more plentiful rainfall in the south than
in the north, which results in increasingly abnormal situations. In Table 1, the residual autocorrelation
measured by the Moran’s I index is calculated for each method. It can be found that the proposed
method has the least residual autocorrelation. Further, the Quantile-Quantile plot is performed to
investigate the normality of the residuals obtained by the proposed method. Based on the results
shown in Figure 9, one can find that the plots are close to linear. The kurtosis and skewness are also
calculated for the residuals. It can be seen that kurtosis is close to three and skewness is close to zero;
thus, it can be concluded that the distribution of the residuals is close to the normal distribution.

TEM-MAE s TEM-RMSE
' ' I ' \/\l‘/__/\/vv\/
’ W : W

:E ;3,)71 5
: | g
s
051
05
Toes To00 Tees 200 205 ® ess 1060 005 2000 2005
YEAR YEAR
STKriging STIDW P-Bshade STHC STKriging-Partition STIDW-Partition
(a) (b)
PRE-RMSE

PRE-MAE 55
T T T

RMSE(mm)

3SW
SOW
251 q

16 L . . . )
1985 1990 1995 2000 2005 20
YEAR

1985 1990 1995 2000 2005
YEAR

STKriging STIDW P-Bshade

(c) (d)

Figure 6. Yearly MAEs and RMSEs from 1984 to 2009 for different methods. (a) TEM-MAE;
(b) TEM-RMSE; (c) PRE-MAE; and (d) PRE-RMSE.
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Figure 7. Scatterplot between observed value and the estimated value; (a) temperature and

(b) precipitation datasets.
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Figure 8. Station srror of the STHC method: (a) temperature data; and (b) precipitation data.
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Figure 9. Quantile-Quantile plot of the residuals obtained by the STHC method; (a) temperature data
(kurtosis = 3.06, skewness = 0.01); and (b) precipitation data (kurtosis = 3.40, skewness = 0.33).
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5. Conclusions

This paper develops a space-time missing data interpolation method based on a heterogeneous
spatio-temporal covariance model. Spatial and temporal heterogeneity are first considered in the
construction of the covariance model, and the best linear unbiased estimates in spatial and temporal
dimensions are obtained. According to the spatio-temporal correlation coefficient, spatial and
temporal interpolation results are then integrated to estimate the missing values of the unsampled
stations. Experiments and comparisons were performed by using the average annual temperature and
precipitation data in China over the past 26 years. The experimental results show that the proposed
method achieves higher accuracy than other classic methods.

It should be noted that the space-time interaction may not be fully considered by the proposed
method. Although the interpolation results obtained by the proposed method are more accurate than
those of existing methods, a space-time coupling model that can fully consider space-time interaction
should be developed in the future.
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