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To detect gene-environment interactions, a logistic regression model is typically fitted to a set of case-control

data, and the focus is on testing of the cross-product terms (gene × environment) in the model. A significant result

is indicative of a gene-environment interaction under a multiplicative model for disease odds. Based on the

sufficient-cause model for rates, in this paper we put forward a general approach to testing for sufficient-cause

gene-environment interactions in case-control studies. The proposed tests can be tailored to detect a particular

type of sufficient-cause gene-environment interaction with greater sensitivity. These tests include testing for auto-

somal dominant, autosomal recessive, and gene-dosage interactions. The tests can also detect trend interactions

(e.g., a larger gene-environment interaction with a higher level of environmental exposure) and threshold interac-

tions (e.g., gene-environment interaction occurs only when environmental exposure reaches a certain threshold

level). Two assumptions are necessary for the validity of the tests: 1) the rare-disease assumption and 2) the

no-redundancy assumption. Another 2 assumptions are optional but, if imposed correctly, can boost the statistical

powers of the tests: 3) the gene-environment independence assumption and 4) the Hardy-Weinberg equilibrium

assumption. SAS code (SAS Institute, Inc., Cary, North Carolina) for implementing the methods is provided.

case-control studies; epidemiologic methods; gene-environment interaction; Hardy-Weinberg equilibrium;

sufficient-component-cause model

Abbreviations: AD, autosomal dominant; AN, all or none; AR, autosomal recessive; CN, controls; CS, cases; CYP1A1, cytochrome

P-450, family 1, subfamily A, polypeptide 1 gene; GD, gene-dosage; GEI, gene-environment independence; HWE, Hardy-Weinberg

equilibrium; IC, interaction contrast; L, leaky.

The occurrence of most human diseases is the result of in-
terplay between genetic and environmental factors (1, 2). To
detect gene-environment interactions, epidemiologists often
adopt a case-control study design, recruiting diseased sub-
jects (cases) and nondiseased subjects (controls) and compar-
ing their genotypes and environmental exposures. A logistic
regression model is typically fitted to the data, and the focus
is on hypothesis testing of the cross-product terms (gene ×
environment) in the model (3). A significant result is indicative
of a gene-environment interaction under a multiplicative model
for disease odds. Oftentimes, it is reasonable to assume that
the genes under examination are in Hardy-Weinberg equilib-
rium (HWE) and are also independent of any environmental

exposure among the nondiseased subjects in the study popu-
lation (4–9). A modified logistic regression methodology de-
veloped by Lee et al. (9) can exploit these 2 assumptions and
achieve higher statistical powers for the multiplicative inter-
action tests.

Based on the sufficient-cause model for risks, VanderWeele
and Robins (10, 11) constructed statistical tests for causal
mechanistic interactions between binary variables. Basically,
these are additive interaction tests, examining whether the
observed disease risks deviate too much from additivity.
VanderWeele (12) then went on to expand the methodologies
for including categorical or ordinal variables with 3 or more
levels. This later development is of particular relevance to the
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current study of detecting gene-environment interactions, be-
cause genes are often coded as ternary variables with levels
indicating 0, 1, or 2 variant alleles; the environmental expo-
sures under study can also have multiple levels.
Based on the sufficient-cause model for rates, Lee (13, 14)

constructed statistical tests for causal mechanistic interactions
between binary variables and determined that a rate-model–
based test has a less stringent threshold for detecting causal
mechanistic interactions than a corresponding risk-model–
based test. In this paper, I build upon previous work (13, 14)
to propose a general hypothesis-testing framework for
sufficient-causegene-environment interactions.Theproposed
tests can be tailored to detect a particular type of sufficient-
cause gene-environment interaction with greater sensitivity.
These include testing for autosomal dominant, autosomal re-
cessive, or gene-dosage interactions. The tests can also detect
trend interactions (e.g., a larger gene-environment interaction
with a higher level of environmental exposure) and threshold
interactions (e.g., gene-environment interaction that occurs
only when the environmental exposure reaches a certain
threshold level). Two assumptions are necessary for the va-
lidity of these tests: 1) the rare-disease assumption and 2) the
no-redundancy assumption (13–15). Another 2 assumptions
are optional but, if imposed correctly, can boost the statistical
powers of the tests: 3) the gene-environment independence
(GEI) assumption and 4) the HWE assumption.

METHODS

Sufficient-cause model for rates

Let G (G = 0, 1, or 2) represent the number of variant al-
leles a subject carries and E (E = 0 or 1) represent a binary
environmental exposure. Let Rateg,e (Oddsg,e) denote the dis-
ease rate (odds) for subjects with G = g and E = e in the study
population. The rare-disease assumption is invoked, so dis-
ease odds (for 1 unit of follow-up time) and disease rates are
equivalent (3).
The above variables (G and E) together define a total of 12

classes of sufficient causes (i.e., (3 + 1) × (2 + 1) = 12), in-
cluding 1 “all-unknown” class (U1), 3 gene-only classes
(U2, U3, U4), 2 environment-only classes (U5, U6), and 6 gene-
environment interaction classes (U7∼U12) (Figure 1). Note that
here we do not impose the assumption of monotonicity (16–20)
on the genetic effect, the environmental effect, or the gene-
environment interaction effect, so this represents the most gen-
eral sufficient-cause model for a ternary G and a binary E.
The sufficient-cause model is partly deterministic and

partly stochastic. The presence of risk factor(s) alone is not
sufficient for the disease. Only when all of the unknown com-
ponents (complement causes) also appear can the sufficient
cause become complete and the disease occur. Let RateU1 ∼
RateU12 denote the “completion rates” of the aforementioned
12 classes of sufficient causes, respectively. The completion
rate for a particular class is the instantaneous arrival rate of the
unknown complement causes in that class (20). Here the
no-redundancy assumption is applied. This assumption pos-
its that within a sufficiently short time interval, there can only
be, at most, 1 arrival event of the unknown complement
causes for each and every subject in the population (13–15).

Under the no-redundancy assumption, the disease rate (and
also the disease odds under the rare-disease assumption) for
subjects with G = g and E = e is a simple arithmetic sum of the
completion rates of the 4 “completable classes” (13, 14), that is,

Odds2;1 ¼ Rate2;1 ¼ RateU1 þ RateU2 þ RateU5 þ RateU7 ;

Odds1;1 ¼ Rate1;1 ¼ RateU1 þ RateU3 þ RateU5 þ RateU8 ;

Odds0;1 ¼ Rate0;1 ¼ RateU1 þ RateU4 þ RateU5 þ RateU9 ;

Odds2;0 ¼ Rate2;0 ¼ RateU1 þ RateU2 þ RateU6 þ RateU10 ;

Odds1;0 ¼ Rate1;0 ¼ RateU1 þ RateU3 þ RateU6 þ RateU11 ;

U10

G = 2 E = 0

G = 2 E = 1

U7

G = 1

G = 1 E = 1

U8

E = 0

U11 U12

E = 0G = 0

G = 0 E = 1

U9

E = 1 E = 0

U5 U6

G = 2 G = 1 G = 0

U2 U3 U4

U1

Figure 1. The 12 total classes of sufficient component causes for a
ternary gene (G = 0, 1, or 2) and a binary environmental exposure
(E = 0 or 1): the all-unknown class (U1), the gene-only classes (U2, U3,
U4), the environment-only classes (U5, U6), and the gene-environment
interaction classes (U7∼U12).
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and

Odds0;0 ¼ Rate0;0 ¼ RateU1 þ RateU4 þ RateU6 þ RateU12 ;

respectively. In the case of subjects with G = 2 and E = 1, for
example, they can develop the disease because of the comple-
tion of theU1,U2,U5, orU7 class; these 4 classes are their com-
pletable classes.

Testing for sufficient-cause gene-environment

interactions

Now, consider the following interaction contrasts (ICs)
which quantify departure from additivity:

IC1 ¼ Odds1;1 � Odds0;1 � Odds1;0 þ Odds0;0
¼ RateU8 � RateU9 � RateU11 þ RateU12 ;

IC2 ¼ Odds2;1 � Odds0;1 � Odds2;0 þ Odds0;0
¼ RateU7 � RateU9 � RateU10 þ RateU12 ;

and

IC3 ¼w1 × IC1þw2 × IC2

¼ ½w2 ×Odds2;1þw1 ×Odds1;1�ðw2þw1Þ×Odds0;1�
� ½w2 ×Odds2;0þw1 ×Odds1;0�ðw2þw1Þ×Odds0;0�

¼ ½w2 ×RateU7 þw1 ×RateU8 �ðw2þw1Þ×RateU9 �
� ½w2 ×RateU10 þw1 ×RateU11 �ðw2þw1Þ×RateU12 �;

with arbitrary w1 and w2. These ICs are linear combinations of
the disease odds, and under the rare-disease and no-redundancy
assumptions, they are equal to linear combinations of the com-
pletion rates of the interaction classes (U7∼U12).

The coefficients in ICs can alternatively be expressed as
the products of contrast coefficients for the gene (G) and the
environment (E), respectively:

IC ¼
X3
i¼1

X2
j¼1

cGi × cEj × Oddsi�1; j�1;

where the genetic contrast coefficients ðcG1 ; cG2 ; cG3 Þ are, re-
spectively, (−1, 1, 0) for IC1; (−1, 0, 1) for IC2; and
(−w1−w2, w1, w2) for IC3. The environmental contrast co-
efficients ðcE1 ; cE2 Þ are (−1, 1) for all 3 ICs. As long as the
sum-to-zero constraints,X3

i¼1

cGi ¼
X2
j¼1

cEj ¼ 0;

are respected, an IC thus constructed will be equal to a linear
combination of the completion rates of—and only of—the
interaction classes. Clearly, a nonzero IC is mathematically
incompatible with all interaction classes having a zero com-
pletion rate. A 2-sided test on an IC,

H0: IC ¼ 0
H1: IC ≠ 0;

�

is therefore a test for sufficient-cause gene-environment
interaction.

The same principle applies in case-control studies, since
the case-control odds estimated in a case-control study are a
constant multiple (the reciprocal of the control sampling frac-
tion of the study) of the corresponding disease odds in the un-
derlying population (3). A straightforward way to estimate the
case-control odds is to divide the number of cases (CSg,e) by
the corresponding number of controls (CNg,e) in a stratum de-
fined by genotype (G = g) and environmental exposure level
(E = e) in a case-control data set, that is, dOddsg;e ¼ CSg;e=
CNg;e:Web Appendix 1 (available at http://aje.oxfordjournals.
org/) details the method for dealing with a polychotomous en-
vironmental exposure with a total of l levels and shows that as
long as the sum-to-zero constraints for the contrast coefficients
are respected, all of the resulting ICs are legitimate tests for
sufficient-cause gene-environment interactions. Asymptoti-
cally, the test is a χ2 test with 1 degree of freedom (df) for
each constructed IC. One can also perform a single χ2 test
for several ICs simultaneously. The degrees of freedom equal
the number of (linearly independent) ICs. For a ternary G and
an l-leveled E, the total number of degrees of freedom amena-
ble for testing is 2 × (l− 1). A simultaneous test with the max-
imum number of degrees of freedom is referred to as the global
test for sufficient-cause gene-environment interactions.

By judiciously designing the contrast coefficients, we can
tailor an IC to detect a particular type of departure from addi-
tivity (sufficient-cause interactions) with greater sensitivity.
For example, we can use ðcG1 ; cG2 ; cG3 Þ ¼ ð�1; 1=2; 1=2Þ for
an autosomal dominant interaction, (−1/2, −1/2, 1) for an
autosomal recessive interaction, and (−1, 0, 1) for a gene-
dosage interaction. For l ≥ 3, there are also many possible
choices for the environmental contrast coefficients, such as
trend interaction (e.g., larger gene-environment interaction
with a higher level of environmental exposure) or threshold
interaction (e.g., gene-environment interaction occurs only
when the environmental exposure reaches a certain threshold
level). Specifying contrast coefficients as above, under the
specific models they are designed to detect, will cause the
ICs to deviate further from zero on average. However, a larger
mean deviation is not enough; to be statistically relevant, we
need the resulting IC to have a smaller variance as well. Web
Appendix 2 shows a weighted version of the IC test, where
the user-specified contrast coefficients areweighted by the in-
verse variances of the case-control odds.

Imposing the independence and HWE assumptions

Because one of the 2 factors considered in this paper is ge-
netic (G) and the other is environmental (E), we will next ex-
plore how to exploit the assumptions of GEI and HWE. If
GEI can be assumed for the nondiseased subjects in the study
population, a more efficient estimation for the case-control
odds is

dOddsGEIg;e ¼ CSg;e
ûg × CNþ;e

;

where ûg ¼ CNg;þ=CNþ;þ is the estimate of the G = g geno-
type frequency in the nondiseased subjects in the study
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population and the “+” in the subscript indicates summation
of the corresponding index.
If GEI and HWE are both assumed for the nondiseased

subjects in the study population, the estimates for the case-
control odds are

dOddsGEI & HWE
0;e ¼ CS0;e

ð1� ûÞ2 × CNþ;e

;

dOddsGEI & HWE
1;e ¼ CS1;e

2 × û × ð1� ûÞ × CNþ;e
;

and

dOddsGEI & HWE
2;e ¼ CS2;e

û2 × CNþ;e
;

respectively, where û ¼ ðCN2;þ þ 0:5 × CN1;þÞ=CNþ;þ is the
estimated allele frequency among nondiseased subjects in the
study population.
Web Appendix 3 presents the formulae of the asymptotic

variances for all estimates. Web Appendix 4 presents the
SAS code (SAS Institute, Inc., Cary, North Carolina) needed
for all of the calculations. Users can specify genetic and envi-
ronment contrast coefficients to suit the most likely model of
sufficient-cause interactions for the disease in question. Calcu-
lation of the weighted contrast coefficients is fully automatic,
requiring no further input from the user. Web Appendix 5 pre-
sents an annotated example of such output.

A SIMULATION STUDY

We conducted a small-scale simulation study to examine the
statistical properties of the proposed tests. We simulated data
for a ternary gene (allele frequency 0.4) and a binary environ-
mental exposure (prevalence 0.3), assuming GEI and HWE.
For the null hypothesis of no sufficient-cause gene-

environment interaction (H0), we set the completion rates
for all of the interaction classes (U7∼U12) to zero (Table 1).
We further constructed a number of alternative hypotheses
(Table 1). For the genetic factor, these include autosomal
dominant (AD), autosomal recessive (AR), and gene-dosage

(GD) interactions, respectively. For the environmental factor,
all alternative hypotheses assumed an all-or-none (AN) inter-
action pattern (interaction for the exposed subjects but not for
the unexposed subjects, completion rates forU10∼U12 being
zero). For all hypotheses, the disease rates are on the order of
1 per 10,000 per year.
A case-control study with 1,000 cases and 1,000 controls

was conducted in the study population. The proposed IC tests
(both unweighted and weighted versions) were applied to the
simulated data with various contrast coefficients, with or
without the GEI and HWE assumptions. The α level was set
at 0.05. A total of 1,000,000 simulations were performed for
each scenario. At this high number of simulations, the error is
no more than

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið0:5 × 0:5Þ=1;000;000p ¼ 0:0005:
Table 2 presents the type I error rates (under H0 in Table 1)

of the IC tests and theweighted IC tests using different (speci-
fied) genetic contrast coefficients. The corresponding weighted
genetic contrast coefficients are shown in the same rows as
the specified ones. As noted above, theweighted coefficients are
automatically calculated from the data once the unweighted
ones are specified/supplied. Here we show the averages from
the total 1,000,000 simulations. Type I error rates of the un-
weighted and weighted IC tests are well controlled for all of
the contrast coefficients we specified, with or without impos-
ing the assumptions of GEI and HWE. If one or both assump-
tions fail, only the unweighted tests and the weighted IC tests
without the failed assumption(s) can maintain the nominal α
level (see Web Tables 1 and 2).
Table 3 presents the empirical powers of the IC tests and the

weighted IC tests under the alternative hypothesis of an inter-
action between an autosomal dominant gene and an all-or-none
environmental exposure (HAD×AN in Table 1). For all of the ge-
netic contrast coefficients specified, statistical power increases
when more assumptions (GEI and/or HWE) are imposed.
Table 3 also shows that given the same assumption(s), the

power is highest for the 1-df weighted IC test with correctly
specified genetic contrast coefficients; that is, the test using
(−0.78, 0.59, 0.19) that corresponds to the autosomal dominant
coefficients (−1, 1/2, 1/2). IC tests using contrast coefficients
closer to (−0.78, 0.59, 0.19) also have favorable powers—that
is, 1) the unweighted IC test using (−1, 1/2, 1/2) and 2) the

Table 1. Completion Rates (per 100,000 Population per Year) for 12 Classes of Sufficient Component Causes Under Various Hypotheses in a

Simulation Study of Gene-Environment Interaction

Hypothesis

Class of Sufficient Component Causes

All-Unknown
Class (U1)

Gene-Only Classes
Environment-Only

Classes
Gene-Environment Interaction (G × E ) Classes

G = 2 (U2) G = 1 (U3) G = 0 (U4) E = 1 (U5) E = 0 (U6) 2 × 1 (U7) 1 × 1 (U8) 0 × 1 (U9) 2 × 0 (U10) 1 × 0 (U11) 0 × 0 (U12)

H0
a 1 4 2 1 3 1 0 0 0 0 0 0

HAD×AN
b 1 4 2 1 3 1 4 4 1 0 0 0

HAR×AN
c 1 4 2 1 3 1 6 1 1 0 0 0

HGD×AN
d 1 4 2 1 3 1 6 3 1 0 0 0

Abbreviations: AD, autosomal dominant; AN, all or none; AR, autosomal recessive; GD, gene-dosage.
a Null hypothesis.
b AD for gene, AN for environmental exposure.
c AR for gene, AN for environmental exposure.
d GD for gene, AN for environmental exposure.
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weighted IC test using (−0.81, 0.33, 0.48) that corresponds to
the gene-dosage contrast coefficients (−1, 0, 1). The weighted
and unweighted tests are the same for the 2-df global interaction
test. This is because the pair of vectors spans the entire interac-
tion subspace, regardless of the values used for the weights.

The 1-df weighted IC test with correctly specified genetic
contrast coefficients has the highest power to detect the other
2 alternatives as well (Web Table 3 for HAR×AN, Web Table 4
for HGD×AN). The global test can detect all types of alternatives
listed in Table 1 with reasonably high power (Table 3, Web Ta-
bles 3 and 4). We also tested other allele frequencies and expo-
sure prevalences and achieved similar results (not shown).
Based on the simulation results, we recommend using the 1-df
weighted IC test when one has a priori knowledge about the
interaction model and using the global test if one does not.

AN EXAMPLE

We used Sam et al.’s (21) case-control data on upper aero-
digestive tract cancers as an example. In this study, Sam et al.
examined the relationship between polymorphisms in the

cytochrome P-450, family 1, subfamily A, polypeptide 1
gene (CYP1A1)—CYP1A1*2A and CYP1A1*1A, with the
former being the variant allele—and smoking (yes/no) in the
risk of contracting upper aerodigestive tract cancers (Table 4).
None of the cells in Table 4 have counts of less than 5. The
assumptions of GEI (P = 0.7563) and HWE (P = 0.6789) are
both tenable among control subjects. Lee et al. (9) previously
analyzed these data assuming a multiplicative model for dis-
ease odds. Under that model, they concluded that the (multi-
plicative) interactions between CYP1A1 polymorphisms and
smoking were nonsignificant at an α level of 0.05, with or
without the assumptions of GEI and HWE.

We next applied the weighted IC test to these data for any
sufficient-cause gene-environment interaction (Table 5).
Without the assumptions of GEI and HWE, none of the ge-
netic contrast coefficients we tried (autosomal dominant,
autosomal recessive, gene-dosage, and global) resulted in
statistically significant test results. However, with the GEI as-
sumption invoked, the weighted IC tests became significant
at α = 0.05 for all contrasts. When both the GEI assumption
and the HWE assumption were invoked, all 3 sets of genetic

Table 2. Genetic Contrast Coefficients and Type I Error Rates (Under H0 in Table 1) of the Interaction Contrast Tests, for the Data Simulated Under

the Assumptions of Gene-Environment Independence and Hardy-Weinberg Equilibrium

Type of Interaction More
Sensitive to Detection

Genetic Contrast Coefficienta Type I Error Rate

Specified Weighted
Assuming Neither

GEI nor HWE
Assuming GEI Only

Assuming Both
GEI and HWE

G = 0 G = 1 G = 2 G = 0 G = 1 G = 2
IC
Test

Weighted
IC Test

IC
Test

Weighted
IC Test

IC
Test

Weighted
IC Test

Autosomal dominant −1 1/2 1/2 −0.77 0.62 0.15 0.044 0.047 0.049 0.049 0.049 0.049

Autosomal recessive −1/2 −1/2 1 −0.31 −0.49 0.80 0.045 0.044 0.049 0.049 0.050 0.050

Gene-dosage −1 0 1 −0.81 0.32 0.49 0.044 0.044 0.049 0.049 0.050 0.049

Global −1 1 0 −0.68 0.73 −0.05 0.044 0.044 0.049 0.049 0.050 0.050

−1 0 1 −0.81 0.32 0.49

Abbreviations: GEI, gene-environment independence; HWE, Hardy-Weinberg equilibrium; IC, interaction contrast.
a The environmental contrast coefficients are specified as (−1, 1) for (E = 0, E = 1) for all scenarios, with the corresponding weighted

environmental contrast coefficients calculated as (−0.71, 0.71).

Table 3. Genetic Contrast Coefficients and Empirical Powers (Under HAD×AN in Table 1) of the Interaction Contrast Tests, for the Data Simulated

Under the Assumptions of Gene-Environment Independence and Hardy-Weinberg Equilibrium

Type of Interaction More
Sensitive to Detection

Genetic Contrast Coefficienta Empirical Power

Specified Weighted
Assuming Neither

GEI nor HWE
Assuming GEI Only

Assuming Both
GEI and HWE

G = 0 G = 1 G = 2 G = 0 G = 1 G = 2
IC
Test

Weighted
IC Test

IC
Test

Weighted
IC Test

IC
Test

Weighted
IC Test

Autosomal dominant −1 1/2 1/2 −0.78 0.59 0.19 0.52 0.63 0.84 0.90 0.85 0.91

Autosomal recessive −1/2 −1/2 1 −0.39 −0.42 0.81 0.05 0.06 0.14 0.15 0.16 0.17

Gene-dosage −1 0 1 −0.81 0.33 0.48 0.19 0.45 0.49 0.79 0.50 0.79

Global −1 1 0 −0.70 0.71 −0.01 0.51 0.51 0.84 0.84 0.85 0.85

−1 0 1 −0.81 0.32 0.48

Abbreviations: GEI, gene-environment independence; HWE, Hardy-Weinberg equilibrium; IC, interaction contrast.
a The environmental contrast coefficients are specified as (−1, 1) for (E = 0, E = 1) for all scenarios, with the corresponding weighted

environmental contrast coefficients calculated as (−0.71, 0.71).
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contrast coefficients designed to be sensitive to detecting
autosomal dominant, autosomal recessive, and gene-dosage
interactions, respectively, resulted in highly significant test
results at α = 0.01. If the multiple testing issue (a total of
12 tests performed simultaneously in this example) is taken
into account, then 2 tests were significant at α = 0.05 after
Bonferroni correction (footnote “c” in Table 5), and all of
the tests with the GEI assumption were significant at a false
discovery rate (22) of 5%.

DISCUSSION

The sufficient-cause model is nonidentifiable, with the
number of model parameters exceeding the total number of de-
grees of freedom in the data. For example, with a ternary gene
and a binary environmental exposure, the model has a total of
12 completion rates (the model parameters) but cohort data can

provide at most 6 gene- and environmental exposure–specific
disease rates (the data degrees of freedom). An estimation of
model parameters is not possible in a nonidentifiable model,
but hypothesis testing is a different story. This paper demon-
strates that the IC test can detect gene-environment interac-
tions, even under the nonidentifiable sufficient-cause model.
The significance of an IC test implies the presence of at least
1 interaction class involved in the given contrast; that is, some
sufficient-cause gene-environment interaction is occurring. A
nonsignificant test result, however, does not guarantee the op-
posite; a perfect cancellation of several interaction classes with
nonzero completion rates also leads to IC = 0. An example is
the “leaky” (L) environmental exposure where the interaction
completion rates for the unexposed subjects (U10,U11,U12) are
exactly 1 × 10−5 shy of those for the exposed subjects (U7,U8,
U9) in Table 1. Here, we have no power whatsoever against
HAD×L, HAR×L, and HGD×L alternatives. This is an unavoidable
limitation for any hypothesis testing of the parameters of a
nonidentifiable model.
The rare-disease assumption is necessary for the proposed

method, under which a sufficient-cause model for rates is
equivalent to a sufficient-cause model for odds. Web Table 5
presents the biases of using odds to approximate rates. The
biases are less than 0.05% for rates under 0.001 per year—
the setting for studies of cancers, coronary heart diseases, etc.
For more common diseases, such as hypertension or type 2
diabetes, the approximation breaks down, and the method
proposed here would be inapplicable.
Another necessary assumption, the no-redundancy as-

sumption, is more subtle and is not amenable to testing by
itself. This is actually a much weaker assumption than the
simple independent action assumption,which originated from
toxicopharmacology (23) and found use in epidemiology
in recent decades (17, 20, 24–31). In the language of the
sufficient-cause model, the simple independent action as-
sumption posits that the arrival events of the unknown com-
plement causes in different classes of sufficient causes are
independent of one another. The no-redundancy assumption
can still hold, even if there is strong dependency in the arrival
events (and the simple independent action assumption fails).

Table 4. ACase-Control Data Set From the Study by Sam et al. (21)

and the Estimated Case-Control Odds

No. of
Cases

No. of
Controls

Estimated Case-Control Oddsa

Assuming
Neither GEI
nor HWE

Assuming
GEI Only

Assuming
Both GEI
and HWE

E = 0

G = 0 55 70 0.79 0.75 0.73

G = 1 76 62 1.23 1.30 1.37

G = 2 19 9 2.11 2.12 1.84

E = 1

G = 0 91 45 2.02 2.20 2.16

G = 1 123 29 4.24 3.76 3.95

G = 2 44 5 8.80 8.75 7.61

Abbreviations: GEI, gene-environment independence; HWE,

Hardy-Weinberg equilibrium.
a The probability of a study subject’s being a case divided by the

probability of his/her being a control in a case-control study.

Table 5. Genetic Contrast Coefficients and P Values for the Data Shown in Table 4

Type of Interaction
More Sensitive to

Detection

Genetic Contrast Coefficienta
P Value From the Weighted
Interaction Contrast Test

Specified Weighted Assuming
Neither

GEI nor HWE

Assuming
GEI Only

Assuming
Both

GEI and HWEG = 0 G = 1 G = 2 G = 0 G = 1 G = 2

Autosomal dominant −1 1/2 1/2 −0.81 0.49 0.32 0.0696 0.0088b 0.0035b,c

Autosomal recessive −1/2 −1/2 1 −0.77 0.16 0.62 0.1644 0.0209b 0.0062b

Gene-dosage −1 0 1 −0.82 0.40 0.41 0.0991 0.0120b 0.0040b,c

Global −1 1 0 −0.79 0.56 0.23 0.0858 0.0239b 0.0139b

−1 0 1 −0.82 0.40 0.41

Abbreviations: GEI, gene-environment independence; HWE, Hardy-Weinberg equilibrium.
a The environmental contrast coefficients are specified as (−1, 1) for (E = 0, E = 1) for all scenarios, with the

corresponding weighted environmental contrast coefficients calculated as (−0.71, 0.71).
b Significant at a false discovery rate of 5%.
c Significant at α = 0.05 after Bonferroni correction.
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To break the no-redundancy assumption, the unknown com-
plement causes for 2 different classes need to have a common
constituent factor, and that common factor must be the last
one to arrive among all of the constituents of these 2 classes,
before all other classes are completed.

The remaining 2 assumptions, the GEI and HWE assump-
tions, are optional, and when their validity is in doubt, a re-
searcher always has the liberty to put them to test using the
data at hand. Han et al. (32) exploited the independence
assumption to develop a constrained likelihood ratio test for
gene-environment interactions under an additive risk model.
However, their method cannot take into account the HWE as-
sumption, and it is highly demanding computationally. By
contrast, all the formulae presented here—with or without
the GEI and HWE assumptions—are of the closed form, ob-
viating the need for a computer-intensive iteration algorithm.
Lee et al.’s (9) modified logistic regression model can exploit
both assumptions and can be easily fitted using common sta-
tistical packages. However, it detects multiplicative interac-
tions, not sufficient-cause gene-environment interactions,
which are the focus of this paper.

While the proposed IC test can be tailored to detect a par-
ticular type of sufficient-cause gene-environment interaction
with greater sensitivity, it is actually a nonspecific test. To pin
down a specific interaction—for example, the U7 interaction
class—one can test for max(Odds2,1 −Odds0,1 −Odds2,0,
Odds2,1− Odds1,1−Odds2,0) > 0. (For a “G = g and E = e”
gene-environment interaction class, one tests for

max
g0≠g
e0≠e

ðOddsg;e � Oddsg0;e � Oddsg;e0 Þ> 0:

VanderWeele referred to this as a “singular interaction” or an
“epistatic interaction,” since there are individuals forwhom the
outcome would occur if and only if G = g and E = e (33–35).)
This is because Odds2;1 � Odds0;1 � Odds2;0 ¼ RateU7�
RateU1� RateU4 � RateU6 � RateU10 and Odds2;1�Odds1;1�
Odds2;0¼RateU7 � RateU1 � RateU3�RateU6 � RateU10 ; so
if statistically either one is larger than zero, it must be the case
that RateU7 > 0, and therefore the presence of the U7 interac-
tion class can be inferred. Further work is needed to develop
empirical tests for these special forms of gene-environment
interaction in case-control studies, with and without the as-
sumptions of GEI and HWE.

Besides the genetic and environmental factors under con-
sideration, there may be other factors that could confound
gene-environment interactions. It may also be that the study
population is not a homogeneous one but instead is com-
posed of several population strata (36–38). The assumptions
of GEI and HWE hold within each population stratum but do
not hold in the population as a whole. To account for these,
one can stratify the data according to confounders and popu-
lation strata and then perform a separate IC test in each result-
ing stratum. With a proper multiple-testing correction for
multiple strata, the presence of some sufficient-cause gene-
environment interaction can be inferred if the result of any
of these stratum-specific IC tests turns out to be significant.
Further work is needed to develop stratified sufficient-cause
interaction testing methods, both when the total number of
strata is large (and the average stratum size is small, i.e.,

the sparse-data scenario) and when some of the stratifying
variables interact with the specific gene and environmental
exposure under study (sufficient-cause interactions between
3 or more variables).
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