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Abstract

The assessments of interactions in epidemiology have traditionally been based on risk-ratio, odds-ratio or rate-ratio
multiplicativity. However, many epidemiologists fail to recognize that this is mainly for statistical conveniences and often
will misinterpret a statistically significant interaction as a genuine mechanistic interaction. The author adopts an alternative
metric system for risk, the ‘peril’. A peril is an exponentiated cumulative rate, or simply, the inverse of a survival (risk
complement) or one plus an odds. The author proposes a new index based on multiplicativity of peril ratios, the ‘peril ratio
index of synergy based on multiplicativity’ (PRISM). Under the assumption of no redundancy, PRISM can be used to assess
synergisms in sufficient cause sense, i.e., causal co-actions or causal mechanistic interactions. It has a less stringent threshold
to detect a synergy as compared to a previous index of ‘relative excess risk due to interaction’. Using the new PRISM
criterion, many situations in which there is not evidence of interaction judged by the traditional indices are in fact
corresponding to bona fide positive or negative synergisms.
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Introduction

Epidemiologists are often troubled by how to make sense of the

joint exposure effects of two factors on the risk of a disease. For

example, is the combined effect of tobacco smoking and asbestos

exposure greater (or smaller) than what would be expected based

on their individual separate effects? And, if the combined effect

indeed deviates from its expectation, does it imply a mechanistic

interaction between the two exposures? These apparently simple

questions prove difficult to answer. First, we need a suitable scale

with which to measure an effect. But which scale to use, a ratio

scale (e.g., risk ratio, odds ratio and rate ratio) or a difference scale

(e.g., risk difference, odds difference and rate difference)? Second,

we need to define a reasonable expectation of the combined effect,

against which to define an interaction. But what type of

interactions: a multiplicative interaction or an additive interaction?

The assessments of interactions have traditionally been based on

risk-ratio, odds-ratio or rate-ratio multiplicativity, such as using the

‘synergistic index of multiplicativity’ (SIM) [1]. No multiplicative

interaction (SIM~1) corresponds to risk-ratio, odds-ratio or rate-

ratio homogeneity across strata in a stratified analysis, or to

absence of cross-product terms in a multiplicative model, such as

logistic, Poisson or Cox regression. The use of multiplicative

models is so dominating in epidemiology that a significant

multiplicative interaction is often mistaken as a genuine mecha-

nistic interaction.

Recently, an index of risk-ratio additivity, the ‘relative excess risk

due to interaction’ (RERI) [2], has received much attention. (For

two dichotomous exposures X1 and X2, RERI~RRprofile~1,1

{RRprofile~1,0{RRprofile~0,1z1, where RRprofile~x1,x2 is the

risk ratio comparing the disease risks between those with exposure

profile of X1~x1,X2~x2 and those with X1~X2~0.) The index

can assess synergisms in sufficient cause sense, i.e., causal co-actions

or causal mechanistic interactions [3–6]. A sufficient cause [7]

contains a combination of component causes. There may be many

classes of sufficient causes for a disease. Any class with all its

components completed is sufficient to cause the disease. For the

aforementioned example, we may speak of synergisms if there are

some lung cancer patients who had developed the disease because of

the completions of the classes of sufficient causes containing both

tobacco and asbestos as their components.

As the RERI above is based on ‘risks’, it necessarily entails

follow-up of a population for a certain period, say, from time 0 to

time T . The dependency on an arbitrary time point T is rather

undesirable. First, it is possible that two researchers using different

Ts will reach different conclusions regarding causal mechanistic

interactions. And second, when T tends to infinity, RRprofile~x1,x2

will tend to one for each and every x1,x2[f0,1g, and RERI will

tend to zero (perfect risk-ratio additivity). This thus masks any

possible synergism between X1 and X2!.

In this paper, I turn to ‘rates’ instead. Because all rates are

defined the same way with their Ts being made to be

infinitesimally small, an index of rate does not have the above T

dependency problem. An alternative metric of risk is then used:

the exponentiated cumulative rate, which I refer to as the ‘peril’. I

will show that the synergy index based on multiplicativity of peril

ratios, the ‘peril ratio index of synergy based on multiplicativity’

(PRISM), can be used to assess synergisms in sufficient cause sense:
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perfect multiplicativity (PRISM~1) implying no synergism,

super-multiplicativity (PRISMw1), positive synergisms, and sub-

multiplicativity (PRISMv1), negative synergisms, respectively. I

will also show that PRISM has a less stringent threshold to detect a

synergy as compared to RERI, and that many situations in which

there is not evidence of interaction judged by the traditional

indices of SIM and RERI are in fact corresponding to bona fide

positive or negative synergisms.

Methods

Consider the relation of two dichotomous exposures and a

disease in a follow-up of a population in a certain time interval, (0,

T ). I assume that the exposure status is time-invariant and the

follow-up is 100% complete (without loss to follow up and

competing death). For people in the population with a risk factor

profile of X1~x1,X2~x2, let Rateprofile~x1,x2 (t) denote the

(instantaneous) disease rate at follow-up time t, Riskprofile~x1,x2 ,
the cumulative disease risk (probability) in (0, T ),

Oddsprofile~x1,x2~
Riskprofile~x1,x2

1{Riskprofile~x1,x2
, the cumulative disease

odds in (0, T ), and Sprofile~x1,x2~1{Riskprofile~x1,x2 , the survival

probability at T . I assume that there is no confounding, selection

bias or measurement error in this cohort study, such that the

associations between the two exposures and the disease should

reflect the genuine causal effects of the exposures on the disease.

For two dichotomous exposures, there are a total of four exposure

profiles (22~4) and a total of nine (32~9) classes of sufficient causes

[7,8]. The classes of sufficient causes can be represented by a ternary

string of length two, ci[ 1,0,�f g for i~1,2, such that a class contains

‘‘Xi~ci’’ as one of its component causes if ci=�, and does not

involve Xi whatsoever if ci~�, that is (see Figure 1), the all-

unknown class (class~ � ,�), the ‘‘X1~1’’ class (class~1,�), the

‘‘X1~0’’ class (class~0,�), the ‘‘X2~1’’ class (class~ � ,1), the

‘‘X2~0’’ class (class~ � ,0), the ‘‘X1~1’’|‘‘X2~1’’ interactive

class (class~1,1), the ‘‘X1~1’’|‘‘X2~0’’ interactive class

(class~1,0), the ‘‘X1~0’’|‘‘X2~1’’ interactive class (class~0,1),

and the ‘‘X1~0’’|‘‘X2~0’’ interactive class (class~0,0) [8]. Let

Rateclass~c1,c2
(t) denote for the ‘class~c1,c2’ sufficient causes the

(instantaneous) arrival rate for the unknown components (comple-

tion rate) at follow-up time t, Riskclass~c1,c2
, the cumulative

completion risk (probability) in (0, T ), Oddsclass~c1,c2
~

Riskclass~c1,c2

1{Riskclass~c1,c2

, the cumulative completion odds in (0, T ), and

Sclass~c1,c2
~1{Riskclass~c1,c2

, the probability of no completion in

(0, T ).

As mentioned previously, a peril is simply a cumulative rate

exponentiated. Without lost to follow up and competing death, a

peril is also the inverse of a survival (risk complement) or one plus

an odds (Exhibit S1), that is,

Perilprofile~x1,x2~ exp

ðT

0

Rateprofile~x1,x2 (t)|dt

� �

~ Sprofile~x1,x2
� �{1

~ 1{Riskprofile~x1,x2

� �{1

~1zOddsprofile~x1,x2

ð1Þ

for a ‘profile~x1,x2’ subject, and

Perilclass~c1,c2
~ exp

ðT

0

Rateclass~c1,c2
(t)|dt

� �

~ Sclass~c1,c2

� �{1

~ 1{Riskclass~c1,c2

� �{1

~1zOddsclass~c1,c2

ð2Þ

for a ‘class~c1,c2’ sufficient causes. A peril is dimensionless and

ranges from 1 (no peril) to infinity (maximum peril).

I invoke the no redundancy assumption [8,9] that in a

sufficiently short time interval, (t,tzt), for each and every subject

in the population there can only be at most one arrival event of the

unknown components. Exhibit S2 shows that under such an

assumption, a peril for a specific exposure profile is the product of

four perils corresponding to the four ‘completable classes’ (defined

in Exhibit S2) for that exposure profile, that is,

Perilprofile~0,0~Perilclass~�,�|Perilclass~0,�

|Perilclass~�,0|Perilclass~0,0,
ð3Þ

Perilprofile~1,0~Perilclass~�,�|Perilclass~1,�

|Perilclass~�,0|Perilclass~1,0,
ð4Þ

Perilprofile~0,1~Perilclass~�,�|Perilclass~0,�

|Perilclass~�,1|Perilclass~0,1,
ð5Þ

and

Perilprofile~1,1~Perilclass~�,�|Perilclass~1,�

|Perilclass~�,1|Perilclass~1,1,
ð6Þ

respectively.

Next, define the peril ratio (PR) for a ‘profile~x1,x2’ subject as

PRprofile~x1,x2~
Perilprofile~x1,x2

Perilprofile~0,0
: ð7Þ

Because perils are the inverses of survivals, a peril ratio can be

interpreted as the ‘fold decrease’ in survival (comparing

‘profile~x1,x2’ subject with ‘profile~0,0’ subject). Define

PRISM as

PRISM~
PRprofile~1,1

PRprofile~1,0|PRprofile~0,1
: ð8Þ

PRISM is a synergy index based on multiplicativity of peril

ratios, or equivalently, multiplicativity of fold decreases in

survivals. Intriguingly from Equations (3),(6), we see that the

above defined PRISM can alternatively be expressed using the

perils of the interactive classes only:

Testing Causal Mechanistic Interactions
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Figure 1. The total 9 classes of sufficient causes for 2 dichotomous exposures.
doi:10.1371/journal.pone.0067424.g001
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Figure 2. Thresholds for PRISM (peril ratio index of synergy based on multiplicativity) and RERI (relative excess risk due to
interaction), when Riskprofile~0,1~0:3 and Riskprofile~0,0~0:1 (A), and when Riskprofile~0,1~0:7 and Riskprofile~0,0~0:9 (B). The solid lines are
the no-synergy lines of PRISM~1, above which are the regions of positive synergisms, and below which, the regions of negative synergisms. The

upper long-dash lines mark the thresholds of PRISM~Perilprofile~0,0 , above which are the regions of the ‘class~1,1’ synergy. The lower long-dash

lines mark the thresholds of PRISM~
1

Perilprofile~0,1
, below which are the regions of the ‘class~1,0’ synergy. The upper short-dash lines mark the

thresholds of RERI~1, above which are the regions of the ‘class~1,1’ synergy. The lower short-dash lines mark the thresholds of

RERI~{RRprofile~0,1, below which are the regions of the ‘class~1,0’ synergy.
doi:10.1371/journal.pone.0067424.g002

Figure 3. The no-synergy lines judged by the PRISM (peril ratio index of synergy based on multiplicativity), and the no-interaction
lines judged by the SIM (synergistic index of multiplicativity) and RERI (relative excess risk due to interaction) criteria, when

Riskprofile~0,1~0:3 and Riskprofile~0,0~0:1 (A), and when Riskprofile~0,1~0:7 and Riskprofile~0,0~0:9 (B). The solid lines are the no-synergy lines of
PRISM~1, above which are the regions of positive synergisms, and below which, the regions of negative synergisms. The dash-and-dot lines are the
no-interaction lines of SIM~1 in terms of relative risks. The short-dash lines are the no-interaction lines of SIM~1 in terms of odds ratios. The
dotted lines are the no-interaction lines of RERI~0 in terms of relative risks. The long-dash lines are the no-interaction lines of RERI~0 in terms of
odds ratio.
doi:10.1371/journal.pone.0067424.g003
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PRISM~
Perilclass~1,1|Perilclass~0,0

Perilclass~1,0|Perilclass~0,1
: ð9Þ

We will say there is synergism between X1 and X2 in sufficient

cause sense, if at least one of Riskclass~1,1, Riskclass~1,0,

Riskclass~0,1, and Riskclass~0,0 is non-zero (or equivalently, if at

least one of Perilclass~1,1, Perilclass~1,0, Perilclass~0,1, and

Perilclass~0,0 differs from one). Because there are a total 9 classes

of sufficient causes but only a total of 4 exposure profiles, the class-

specific perils (Perilclass~c1,c2
,where c1,c2[ 1,0,�f g) by themselves

are not identifiable (not estimable from the data). However, this

non-identifiability problem does not hamper our ability to test

synergisms. A two-sided test on PRISM as defined in Equation (8),

H0 : PRISM~1

H1 : PRISM=1,

�
ð10Þ

is a global test for synergisms. (PRISM~1 is the condition of no

multiplicative interaction on the peril scale, or equivalently, no

additive interaction on the cumulative rate scale.) The significance

of the test implies the presence of at least one of the following four

synergy classes: ‘class~1,1’, ‘class~1,0’, ‘class~0,1’ and

‘class~0,0’. This is because from Equation (9), PRISM=1
forbids Perilclass~1,1~Perilclass~1,0~Perilclass~0,1~Perilclass~0,0

~1 and therefore also Riskclass~1,1~Riskclass~1,0~Riskclass~0,1

~Riskclass~0,0~0: (Note however that PRISM~1 does not

guarantee the absence of synergisms; a perfect cancellation of the

positive and negative synergisms also leads to PRISM~1:)
A one-sided test on PRISM,

H0 : PRISMƒ1

H1 : PRISMw1,

�
ð11Þ

is a test for positive synergisms of ‘class~1,1’ and ‘class~0,0’

(PRISMw1 forbids Perilclass~1,1~Perilclass~0,0~1 and

Riskclass~1,1~Riskclass~0,0~0), and a one-sided test,

H0 : PRISM§1

H1 : PRISMv1,

�
ð12Þ

a test for negative synergisms of ‘class~1,0’ and ‘class~0,1’

(PRISMv1 forbids Perilclass~1,0~Perilclass~0,1~1 and

Riskclass~1,0~Riskclass~0,1~0). PRISM also permits a

test specifically for a particular synergy class, albeit with

a more stringent threshold. From Equations (3) and (9),

we see that
PRISM

Perilprofile~0,0
~

Perilclass~1,1
Perilclass~1,0|Perilclass~0,1|Perilclass~�,�|Perilclass~0,�|Perilclass~�,0

:

Therefore,

H0 : PRISMƒPerilprofile~0,0

H1 : PRISMwPerilprofile~0,0,

(
ð13Þ

is a test specifically for ‘class~1,1’ (PRISMwPerilprofile~0,0

forbids Perilclass~1,1~1 and Riskclass~1,1~0). By similar argu-

ments,

H0 : PRISMƒPerilprofile~1,1

H1 : PRISMwPerilprofile~1,1,

(
ð14Þ

is a test specifically for ‘class~0,0’,

H0 : PRISM§
1

Perilprofile~0,1

H1 : PRISMv
1

Perilprofile~0,1 ,

(
ð15Þ

a test specifically for ‘class~1,0’, and

H0 : PRISM§
1

Perilprofile~1,0

H1 : PRISMv
1

Perilprofile~1,0 ,

(
ð16Þ

a test specifically for ‘class~0,1’, respectively.

Figure 2 presents the thresholds for the PRISM test. The solid

lines are the no-synergy lines of PRISM~1. Above the lines are

the regions of positive synergisms, and below it, the regions of

negative synergisms. The upper long-dash lines mark the

thresholds of PRISM~Perilprofile~0,0, above which are the

regions of the ‘class~1,1’ synergy, whereas the lower long-dash

lines mark the thresholds of PRISM~
1

Perilprofile~0,1
, below

which are the regions of the ‘class~1,0’ synergy.

A comparison of the above PRISM test with the RERI test [3–

6] is in order. The former is based on cumulative rates, while the

latter, cumulative risks. RERI can also test for specific synergisms:

RERIw1 for ‘class~1,1’ [corresponding to PRISM Test (13)],

RERIwRRprofile~1,1 for ‘class~0,0’ [corresponding to PRISM

Test (14)], RERIv{RRprofile~0,1 for ‘class~1,0’ [corresponding

to PRISM Test (15)], and RERIv{RRprofile~1,0 for ‘class~0,1’

[corresponding to PRISM Test (16)], respectively.

In Figure 2, the upper short-dash lines mark the threshold of

RERI~1 (for ‘class~1,1’), whereas the lower short-dash lines, the

threshold of RERI~{RRprofile~0,1 (for ‘class~1,0’). We see that

the RERI thresholds are considerably more stringent than the

corresponding PRISM thresholds (long-dashed lines). A proof is

given in Exhibit S3 showing that a synergy can always be detected

by PRISM if it is detected by RERI.

It is also of interest to re-examine the situations in which there is

not evidence of interaction judged, respectively, by the RERI

index (in terms of risk ratios as the above, or odds ratios,

ORprofile~1,1{ORprofile~1,0{ORprofile~0,1z1), and the SIM

index (SIM~
RRprofile~1,1

RRprofile~1,0|RRprofile~0,1
in terms of risk ratios,

or
ORprofile~1,1

ORprofile~1,0|ORprofile~0,1
in terms of odds ratios). From

Figure 3, we see that a no-interaction line either of RERI~0 or

SIM~1 can penetrate deeply into the zones of positive

(PRISMw1, regions marked by the upward arrows) and negative

(PRISMv1, regions marked by the downward arrows) syner-

gisms. This suggests that many situations in which there is not

evidence of interaction previously judged by the traditional indices

of SIM and RERI could in fact be bona fide positive or negative

synergisms. Exhibit S4 shows that it is only when the disease under

study is exceedingly rare or exceedingly common that a RERI

criterion for rare diseases and a SIM criterion for common

diseases shall correspond to the proposed PRISM criterion.

Sometimes, it is reasonable to assume the monotonicity assumption

[10–12] that neither X1 nor X2 has a preventive action to disease, or

Testing Causal Mechanistic Interactions
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more specifically, the assumption of no preventive action [13,14] that

component causes such as X1~0 and X2~0 cannot be present in any

class of sufficient causes (Riskclass~0,0~Riskclass~0,�~Riskclass~0,1

~Riskclass~�,0~Riskclass~1,0~0 and Perilclass~0,0~Perilclass~0,

�~Perilclass~0,1~Perilclass~�,0~Perilclass~1,0~1). This leaves us

now with only a total of 4 classes of sufficient causes, the perils of which

are all identifiable. From Equations (3),(7), and (9), we see now

that Perilclass~�,�~Perilprofile~0,0, Perilclass~1,�~PRprofile~1,0,

Perilclass~�,1~PRprofile~0,1, and Perilclass~1,1~PRISM: There-

fore, the cumulative completion risks (probabilities) for the 4 classes of

sufficient causes are:

Riskclass~�,�~
Perilprofile~0,0{1

Perilprofile~0,0
, ð17Þ

Riskclass~1,�~
PRprofile~1,0{1

PRprofile~1,0
, ð18Þ

Riskclass~�,1~
PRprofile~0,1{1

PRprofile~0,1
, ð19Þ

and

Riskclass~1,1~
PRISM{1

PRISM
, ð20Þ

respectively.

Exhibit S5 details all the necessary formulas (including the large-

sample variances) for a synergy analysis in terms of cell counts of a

study.

An Example
As an example, I re-analyze a cohort study (the Example 3 in

Zou’s paper [15]) using the PRISM approach. The cohort study

assesses the effects of age (coded as 1 if age§40 years and 0 if

otherwise) and body mass index (BMI, coded as 1 if BMI§25 kg/

m2 and 0 if otherwise) on hypertension (coded as 1 if diastolic

blood pressure§90 mmHg and 0 if otherwise). Table 1 presents

the perils and the 95% confidence intervals (CIs) for the four

exposure profiles. Using the (young age, low BMI) as the reference,

the peril ratios and the 95% CIs are also presented, which show

the fold decreases in hypertension-free probabilities. The PRISM

for this example is calculated as 1.0905 with a 95% CI of

1.0341,1.1499. This implies that the peril ratios in this example

(fold decreases in hypertension-free probabilities) do not conform

to a multiplicative model.

The test statistic of the global test for synergisms for this

example is 3.1961 with a highly significant two-sided p-value of

0.0014 (for global synergisms) and a highly significant one-sided

(upper tail) p-value of 0.0007 (for positive synergisms). The specific

test for ‘class~1,1’ (the synergy between old age and high BMI in

this example) has a test statistic of 1.5763 with a marginally

insignificant p-value of 0.0575. (The test for the same synergy class

using the RERI approach yields a comparatively much larger p-

value of 0.2399.) Note that this example is used for illustrative

purposes only and should not be taken as evidence of actual

synergism here since the exposures have been dichotomized.

Assessing synergism or interaction for continuous exposures under

dichotomization is considerably trickier [16].

If the assumption of no preventive action is deemed reasonable

for this example, the cumulative completion risks and the 95% CIs

can be calculated for the four classes of sufficient causes as

presented in Table 2.

Discussion

To study toxic effects of two chemicals administered simulta-

neously, the model of simple independent action had seen a very

long history of use in toxicopharmacology dating back to 1939

[17]. In recent decades, epidemiologists [11,12,18–22] and

researchers in other fields (infectious disease [23], genetics [24]

and environmental health [25]) also began to define interactions

based on deviation from independence. However, independence is

a rather strong assumption. In the present context of sufficient

component causes, the completions of different classes of sufficient

causes are not likely to be independent events. Rather, they are

more likely to be positively correlated to one another due to

possible overlapping of the constituent factors of the class-specific

unknowns. This paper replaces the independence assumption with

a much weaker Poisson-like assumption–the no redundancy

assumption. The assumption dictates that in a sufficiently short

time interval, for each and every subject in the population the

probability of two or more than two arrival events of the unknown

components is negligible. (Suzuki et al [14] previously introduced

the concept of potential completion times of sufficient causes and

Table 2. The cumulative completion risks with the 95%
confidence intervals (CIs) for the example data in Table 1.

Class of Sufficient Causes
Cumulative Completion Risk
(95% CI)

All Unknown 4.36% (3.51%,5.41%)

Old Agea 10.79% (8.20%,14.07%)

High BMIb 6.99% (5.27%,9.21%)

‘‘Old Age’’|‘‘High BMIb’’ 8.30% (4.55%,14.64%)

aage§40 years.
bbody mass index§25 kg/m2.
doi:10.1371/journal.pone.0067424.t002

Table 1. The example data (Reference 15), the perils, the peril
ratios and the peril ratio index of synergy based on
multiplicativity (PRISM) with the 95% confidence intervals
(CIs).

Agea BMIb Hypertension Peril (95% CI)
Peril Ratio
(95% CI)

No Yes

young low 1731 79 1.0456
(1.0364,1.0572)

1.0000

old low 581 100 1.1721
(1.1392,1.2128)

1.1210
(1.0849,1.1582)

young high 1232 153 1.1242
(1.1050,1.1469)

1.0751
(1.0528,1.0979)

old high 743 278 1.3742
(1.3260,1.4294)

1.3142
(1.2642,1.3662)

PRISM (95% CI) = 1.0905 (1.0341,1.1499)

aold: age§40 years; young: agev40.
bBMI: body mass index; high: BMI§25 kg/m2; low: BMIv25.
doi:10.1371/journal.pone.0067424.t001
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assumed that each potential completion time is different. This is a

different way to invoke the same no redundancy assumption.)

Even with strong dependency in the arrival events, the no

redundancy assumption should still hold in each and every time

interval that is infinitesimally small, unless one argues that the

probability is non-negligible that an overlapping constituent factor

happens to be the last one to arrive, and in not just one but at least

two classes of sufficient causes.

The assumption of proportional hazards (rates) has often been

invoked in longitudinal follow-up studies (cohort studies)

[8,11,12,26,27]. The assumption is often true (or approximately

so) for most situations. But occasionally, we will see a larger

deviation. For example, the hazard curves for different exposure

profiles [Rateprofile~x1,x2 (t) for x1,x2[ 1,0f g] can cross each other,

thus failing the assumption completely. The proposed PRISM

criterion does not need the proportional hazards assumption. It is

a valid synergy test irrespectively of proportionalities, non-

proportionalities or crossings of the hazard curves. If the hazard

curve for each and every exposure profile in population A is a

constant multiple (say, c) of the corresponding hazard curve in

population B, we will have PRISMA~PRISMc
B (Exhibit S6) and

therefore achieve the same conclusion about synergisms (apart

from statistical variations) in the two populations.

In a recent paper, VanderWeele [27] studied proportional

hazards models and made an interesting conclusion that ‘‘causal

interactions can disappear as time progresses, ie, whether a causal

interaction is present depends on the follow-up time’’. Exhibit S7

re-examines this problem using the proposed PRISM criterion. It

is found that in the proportional hazards models, theoretically a

synergy signal will not go away with more follow-up times.

However, there does exist an optimal follow-up time for maximum

power of the PRISM test: to follow up the cohort subjects until

,80% of them are diseased (assuming no lost to follow up and

competing death).

In this paper, methods for assessing sufficient cause synergism

for rates without the co-cause independence and monotonicity

assumptions are presented. The method can be extended in

several ways. First, it is worthwhile to extend the present method

to deal with exposures with multiple levels. This will allow us to

study dose-response exposure-disease relations as well as dose-

dependent causal mechanistic interactions. Second, casting the

present method in a proper modeling framework should also prove

useful to accommodate more than two exposures and to adjust for

possible confounders. Here we need to go beyond the commonly

used logistic regression (in epidemiology [7]) and probit regression

(in econometrics [28]) for binary outcomes, because these two

models are purely statistical in nature without a built-in causal

mechanism. Third, asides from confounding, selection bias and

measurement errors, a cohort study can be complicated by the

problems of lost to follow up and competing deaths, etc. A valid

synergy analysis for censored data also awaits further studies.

Finally, in an ordinary case-control study for a rare disease, the

PRISM criterion can be approximated by the RERI criterion in

terms of odds ratios (Exhibit S4). Without the rare-disease

assumption however, one may need to resort to alternative control

sampling schemes, such as density sampling or case-base (case-

cohort) sampling [7]. How to test causal mechanistic interactions

under such settings also deserves further studies.
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