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a b s t r a c t

An understanding of the complexity of spatial-temporal variations in regional air quality and its
respective source contributors is one of the priority research areas due to the adverse effects of air
pollution on human health and the environment. In this paper, we integrate air dispersion modeling and
Geographic Information System (GIS) based spatial analysis methods to characterize regional ambient air
quality at a relatively fine geographical scale (1 km� 1 km) while ascertaining source contributors. The
temporal variation analysis shows that sulfur dioxide (SO2) pollution in Dallas County, Texas did not
consistently increase or decrease from 1996 to 2002. The lowest and highest mean levels of annual SO2

concentrations at all the receptors (n¼ 2000) were 0.39 mgm�3 and 2.32 mgm�3 in 2001 and 2002,
respectively. Meanwhile, analysis results suggest that the annual SO2 concentrations in a small part of
Dallas County slightly declined with the highest value of �1.00 mgm�3 over the 1996e2002 period, while
most of the county experienced increased SO2 concentration levels from 0.00 to 0.25 mgm�3. In addition,
the source apportionment analysis demonstrated that the variations in total annual SO2 concentrations
in Dallas County from 1996 to 2002 were significantly different from those by source classification. That
is, compared to industrial emission sources, on-road vehicle emission sources caused variations in annual
SO2 concentrations with relatively larger extents (power of determinant¼ 0.42). However, extreme
variations in concentrations were due to industrial emission sources (3.45% vs. 0.00%). Based on these
observations, it can be concluded that the combination of air dispersion modeling and GIS-based spatial
analysis shows promise to overcome the drawbacks of sparse intraurban air quality monitoring in
characterizing the spatial-temporal micro-variations in regional ambient air quality and ascertaining
roles of source contributors over long-term periods.

Published by Elsevier Ltd.
1. Introduction

Ambient sulfur dioxide (SO2) is regulated by the U.S. Environ-
mental Protection Agency (U.S. EPA) as one of the six criteria air
pollutants. Due to its potentially adverse effects on the human
health (e.g. low birth weight) and the environment (e.g. acid depo-
sition) (Zou et al., 2009a; U.S. EPA, 2008a), SO2 has been given high
priority in research activities in the fields of air pollution and
environmental health research. Recent epidemiological findings
have also confirmed the associations between low birth weight and
maternal SO2 exposure even at exceptionally low exposure levels
ax: þ1 (956) 882 6692.

Ltd.
(Bell et al., 2007). Therefore, it is critical to quantitatively evaluate
regional ambient SO2 exposure levels at fine scales within urban
areas and ascertain source contributors in order to make relevant
policy decisions for reducing health and environmental risks
caused by deposition and exposure.

Current monitoring data from the U.S. EPA (2008b) have
described the total amount of source-specific SO2 emissions at
different administrative unit levels (i.e. national, state, county). This
data can help us understand the variation tendency of a specific
contributor (e.g. industrial emissions, on-road vehicle emissions) over
a certain geographic area over time. However, identifying the
geographic distribution of SO2 concentrations and their spatial-
temporal dynamic variations based on statistic SO2 emission data
presents a considerable challenge. In addition, bias, even incorrect
conclusions, may be introduced when evaluating air quality of
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a location by only considering the emission data of a source around
it, especially in an area without a sufficient number of air quality
monitoring sites (Zou, 2010). For example, an area with high SO2
concentrations might result from long-range transport although the
total amount of emissions in that area may be low (Li, 2010).

Studies examining spatial patterns and or temporal tendencies
of air pollution concentrations have been extensively reported in
previous publications over the past decade. A key weakness of
many of these studies is the fact that the spatial resolution of air
quality monitoring sites in any particular study area was not
sufficiently dense to characterize the true nature of small-area
variability (Tayanc, 2000; Hung et al., 2005; Cyrys et al., 2008;
Juneng et al., 2009; Pang et al., 2009). Further, it has been sug-
gested that the coarse resolution at which these monitoring
networks often operate may introduce additional error when
evaluating health outcomes (Wilson et al., 2005).

Alternatively, air dispersionmodelingmethods for simulating air
pollution concentrations by discretely located receptors (Holmes
and Morawska, 2006) at different spatial resolutions have been
rapidly developing over recent years. Orloff et al. (2006) successfully
simulated the ambient hydrogen cyanide concentrations at five
discrete locations near a gold heap leach field with the AMS/EPA
Regulatory Model (AERMOD). Stein et al. (2007) simulated the
spatial distribution of benzene concentrations with a grid size of
1 km� 1 km by using a hybrid modeling approach. In our earlier
work (Zou et al., 2009b), we explored the spatial pattern of SO2
concentrations in the Dallas area of Texas at a fixed time with
AERMOD. These studies demonstrate the feasibility of using air
dispersion models to disclose the spatial-temporal variations in air
pollutant concentrations at a relatively higher resolution, address-
ing a critical problem in air quality monitoring and modeling.

In addition, recent studies have also shown that air dispersion
modeling can provide a way to identify the relative contributions of
different types of emission sources to the total ambient air pollution
concentrations (Islam, 1999; Crabbe et al., 2000; Kuhlwein et al.,
2002; Bullock and Breheme, 2002; Lin et al., 2004; Peace et al.,
2006; Bell et al., 2007; Cheng et al., 2007). However, these studies
either investigated the emission source contribution to urban air
quality at a discrete receptor site (Lin et al., 2004) or had an issue
with large-area estimated contributions of various emission sources
to the total ambient air (Wang et al., 2005; Peace et al., 2006; Cheng
Fig. 1. An overview of
et al., 2007). As a result, these spatial resolutions are too coarse for
some applications. There exists little analysis of source-specific
emission sources at higher resolution (e.g. 1 km� 1 km), let alone
the examination of emission source contribution to air quality
variations over longer-term periods of exposure.

In order to address the research gap described above, this study
aims to develop a method to characterize ambient air pollution
concentrations at a fine geographical scale and ascertain its source
contributors. To achieve this goal, we first simulate ambient daily
and annual SO2 pollution concentrations across Dallas County from
1996 to 2002 corresponding to three source emissions (industrial
emission sources only, on-road vehicle emission sources only, and
industrial & on-road vehicle emission sources combined) using an
air dispersion model. Next, we analyze the seasonal and yearly
variations of simulated SO2 concentrations and detect their spatial
variation patterns over the entire study period at a resolution of
1 km� 1 km using GIS spatial analysis methods (i.e. Kriging, over-
lay). Finally, the contributions of different types of emission sources
to the total SO2 concentrations are determined with a series of
statistical measures. The results visually demonstrate the dynamic
variation patterns of ambient SO2 pollution and further explain how
these variation patterns would be influenced by emission sources
over a longer time period. Fig. 1 illustrates the overall study design.

2. Study area

Dallas County is located in the Dallas-Fort Worth metropolitan
area in Texas, United States (Fig. 2). The county has an area of
2352 km2 with 1683 census block group polygons, and had a total
population of approximately 2,218,899 in 2000 (U.S. Census Bureau,
2008). This area has attracted considerable attention due to
concerns about poor air quality (McDade et al., 2000). The elevation
of Dallas County is about 100e262 m above sea level (ASL) with
a mean elevation of 155.7 m. The area is dominated by a humid
subtropical climate with humid springs and hot summers. The
annual mean precipitation is around 881 mm while most of the
rainfalls occur in May with monthly average precipitation of
130 mm. The lowest and highest average monthly temperatures are
2 �C in January and 35.5 �C in August. The annual mean temperature
is 18.7 �C. While S-SE is the predominant wind direction in Dallas
County, the average annual wind speed in the area is 5.8 m s�1.
the study design.



Fig. 2. The location of study area with wind rose diagram for 2002.
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3. Materials and methods

3.1. Data

This study utilizes emission, meteorological, and terrain data.
The SO2 emission data in Dallas County for years 1996 and 2000
were directly extracted from the 1999 and 2002 National Emission
Inventory (NEI) databases (U.S. EPA, 2008b). Meanwhile, the SO2
emission data in Dallas County for other years (years 1997e1999,
2001e2002) were developed based on the 1999 and 2002 NEI and
the yearly pollutant facilities summary reports provided by the
U.S. EPA. The yearly SO2 emissions were categorized as industrial
emissions and on-road vehicle emissions (e.g. highways, major
local streets). Meteorological data included the near-surface
measurement and upper-air sounding data from 1996 to 2002,
which were obtained from the National Climatic Data Center
(NCDC, 2008) and the National Oceanic and Atmospheric Admin-
istration (NOAA, 2008), respectively. In addition, two 1� U.S.
Geological Survey (USGS) digital elevation datasets at a scale of 1:
250,000 were used to characterize the topographic relief of the
study area. For a detailed description of emission data, meteoro-
logical data and terrain data, please refer to our previous work (Zou
et al., 2010).

3.2. Air dispersion modeling

Air dispersion modeling in this study was implemented by
AERMOD, which has been recognized as a reliable model for esti-
mating ambient concentrations of air pollutants (Venkatram et al.,
2004; Perry et al., 2005). The settings and parameters for AER-
MOD were determined and processed with those (e.g. albedo,
bowen ratio, and surface roughness) as described in our earlier work
(Zou et al., 2010). After these preparations, the AERMOD model was
run at daily and annual temporal scales for simulating the SO2
concentrations at each receptor from different emission sources in
Dallas County from 1996 to 2002. The validation process of AERMOD
performance can also be found in our earlier work (Zou et al., 2010).

3.3. GIS-based spatial analysis

To understand the spatial pattern of ambient SO2 concentrations
in Dallas County and its yearly variations over the study period,
spatial interpolation and overlay analysis were performed. For the
spatial interpolation operation, ordinary kriging was used to
produce the continuous annual SO2 concentration maps from
1996 to 2002 with a resolution of 1 km� 1 km based on the SO2
concentrations at the locations of preset receptors from air
dispersion modeling. Ordinary kriging has been shown to be the
best linear unbiased estimator (BLUE) (Jerrett et al., 2005). Next,
overlay analysis, a raster calculation, was performed using func-
tions in the ArcGIS spatial analysis module (version 9.3). As a result,
we generated spatial variations of SO2 concentrations at a scale of
1 km in Dallas County over the entire study period (1996e2002).
The spatial interpolation and overlay analysis were separately
implemented to ascertain the source contribution of different types
of emission sources to the total SO2 concentrations for each of the
three emission scenarios.

3.4. Statistical evaluation

To detect how different emission sources would affect the
annual SO2 concentrations in Dallas County from 1996 to 2002, we



Table 1
Descriptive statistics of seasonal and annual SO2 concentrations in Dallas County
from 1996 to 2002.

Season Statistical
measure

1996 1997 1998 1999 2000 2001 2002

Spring Min (mgm�3) 0.06 0.10 0.10 0.10 0.02 0.03 0.08
Max (mgm�3) 2.80 4.51 3.73 260.35 117.88 123.23 95.86
SD 0.33 0.59 0.58 11.85 3.76 8.57 10.33

Summer Min (mgm�3) 0.06 0.14 0.10 0.10 0.02 0.02 0.06
Max (mgm�3) 2.66 5.77 4.06 288.51 80.03 75.42 74.00
SD 0.32 0.71 0.62 13.16 3.65 3.44 9.16

Autumn Min (mgm�3) 0.08 0.19 0.13 0.12 0.03 0.03 0.16
Max (mgm�3) 4.09 7.91 4.90 342.56 104.98 100.56 54.99
SD 0.51 1.02 0.80 15.63 4.79 4.59 8.22

Winter Min (mgm�3) 0.09 0.19 0.15 0.09 0.04 0.03 0.17
Max (mgm�3) 3.77 6.37 4.87 310.39 105.74 99.70 74.14
SD 0.47 0.86 0.80 14.16 4.82 4.55 9.53
Annual (mgm�3) 0.47 0.93 0.80 1.30 0.40 0.39 2.32
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mapped the variation of source-specific annual SO2 concentrations.
Next, based on the classification standards for industrial & on-road
vehicle emission sources combined-based variation map of annual
SO2 concentration (i.e. �1.00 to 0.00; 0.01e0.25; 0.26e1.00;
1.01e3.60; 3.61e8.50; 8.51e15.00; >15.00, unit: mgm�3) utilizing
‘natural break’ points, all the spatial variation maps of annual SO2
concentration by source classification were sorted into seven
categories. The area proportion, mean, and SD of the annual SO2
concentration in each source category were compared to initially
detect the similarity of the variations of annual SO2 concentration
at different levels caused by different types of emission sources. As
an additional quantitative measure of inter-source correlation, we
employed a method developed by Wang et al. (2010) called factor-
detector. This approach evaluates whether a geographical stratum
(xi) is responsible for an observed spatial pattern (y). The result of
the factor-detector analysis is defined as PDxiy. xi is the full deter-
minant of y if the value of PDxiy is ‘1’ while ‘PDxiy¼ 0’means xi has
no impact on y. In this process, the source-specific variations in SO2
concentrations were again reclassified into seven categories at
‘natural break’ points.
4. Results

4.1. Temporal variation of ambient SO2 concentrations

Based on the simulated results from AERMOD, the mean, as well
as the SD of seasonal (average) and annual SO2 concentrations at all
the locations of preset receptors were calculated to represent the
levels of SO2 pollution for the entire Dallas County in each year over
the entire study period. The minimum and maximum values were
Fig. 3. Seasonal SO2 concentrations in
also correspondingly extracted out among all these seasonal and
annual SO2 concentrations at all locations of preset receptors to
indicate the variations between extreme upper and lower SO2
concentrations in Dallas County from 1996 to 2002. The results are
presented in Table 1 and Fig. 3.

As shown in Table 1, the mean annual SO2 concentrations at all
the locations of preset receptors from 1996 to 2002 fluctuated
between 0.39 mgm�3 and 2.32 mgm�3 while the highest and lowest
concentrations emerged in 2002 and 2001, respectively. This vari-
ation tendency was similar to those season-specific variations over
the entire study period with the exception of the variation between
spring in 2000 and 2001. Fig. 3 indicates that, among all the seasons
in the study period, autumn and winter were the seasons with
relatively higher mean annual SO2 concentrations at all the loca-
tions of preset receptors in most of the study years while the
relative lower concentrations mostly emerged in spring and
summer. These results were only partly reversed in 1999 and 2001.
In these two years, the mean of seasonal SO2 concentrations at all
the locations of preset receptors in the spring of 1999 was slightly
higher than the mean in winter (i.e. 1.38 mgm�3 vs. 1.26 mgm�3).
This seasonal phenomenon was again observed in 2002, with
means of seasonal SO2 concentrations at all the locations of preset
receptors at 0.43 mgm�3 and 0.41 mgm�3 in the spring and autumn
of 2001, respectively.

In addition, whereas the lowest annual SO2 concentrations at all
the locations of preset receptors in Dallas County did not show
significant variations over the study period, the highest values in
Table 1 demonstrate that there was substantial variability in
maximum annual SO2 concentrations around 1999. The highest
levels of annual SO2 concentrations in Dallas County after 1999
were elevated relative to years prior to 1999. The SD values in
Table 1 also show that spatial variations between the seasonal SO2
concentrations at the local locations of Dallas County gradually
increased from 1996 to 1999 (e.g. with a change from 0.33 to 11.85
from the spring of 1996 to 1999), while these values appeared to
randomly fluctuate from 1999 to 2002 (e.g. with 11.85, 3.76, 8.57,
and 10.33 from the spring of 1999 to 2002).
4.2. Spatial variation of ambient SO2 concentrations

Fig. 4 illustrates the spatial distributions of simulated annual
SO2 concentrations with a grid size of 1 km� 1 km in Dallas County
and their variations from 1996 to 2002. As shown in Fig. 4(a), most
areas of Dallas County in 1996 experienced relatively lower levels
of SO2 concentrations (e.g. ranging from 0.00 to 0.40 mgm�3; 0.41
to 0.65 mgm�3). After 1997, we see an increase in levels of
SO2 concentrations (e.g. ranging from 0.92 to 1.29 mgm�3; 1.30
to 2.42 mgm�3). The areas with extremely elevated annual SO2
Dallas County from 1996 to 2002.

WJF
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Fig. 4. Spatial distributions of simulated annual SO2 concentrations in Dallas County and their variations, 1996e2002.
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concentrations in Dallas County (i.e. greater than 5.30 mgm�3) from
1996 to 1999 also appeared to be extending, especially in 1997
(Fig. 4(b)) and 1998 (Fig. 4(c)). However, the trend of increasing
annual SO2 concentrations in Dallas County stalled in 1999 and
consistently fluctuated after 1999 (Fig. 4(d)). In 2000 (Fig. 4(e)) and
2001 (Fig. 4(f)), the original areas with relatively high levels of
SO2 concentrations (e.g. ranging from 0.92 to 1.29 mgm�3; 1.30 to
2.42 mgm�3) disappeared although the areas with SO2 concentra-
tions ranging from 2.42 to 5.30 mgm�3 remained high. In contrast
to 2000 and 2001, the geographic extent of the areas with higher
SO2 concentrations ranging from 2.42 to 5.30 mgm�3 greatly
increased in 2002, while a similar pattern was observed in other
areas of lower concentration. Between 1996 and 2002, the areas
with the highest concentration moved from the southwest corner
of Dallas County to the northwest area of the County (Fig. 4).

In addition, although results in Fig. 4(h) indicate that the annual
SO2 concentrations in a small part of Dallas County declined slightly
with an extreme value of �1.00 mgm�3 from 1996 to 2002, the
Fig. 5. Spatial-temporal variations in annual SO2 concentrations in Dallas County from 1996
and industrial & on-road vehicle emission sources combined (c).
annual SO2 concentrations in most areas of Dallas County still
increased. Among them, the areas with variation in increasing
annual SO2 concentrations ranging from0.00 to 0.25 mgm�3 ranked
first, while the area of those districts ranging from 0.25 to
1.00 mgm�3 and 1.00 to 15.00 mgm�3 ranked second and third,
respectively. The district with the greatest variation of annual SO2
concentrations was found around the center of northwestern part
of Dallas County, with values larger than 15.00 mgm�3. The areas
with relatively higher variations of annual SO2 concentrations in
Dallas County were largely along a northwest to southeast band,
which is the predominant wind direction (i.e. 122 degree) as shown
in Fig. 2.

4.3. Agreements on the spatial-temporal variations of ambient SO2

concentrations by source classification

Fig. 5 illustrates the spatial distribution of source-specific SO2

concentrations in Dallas County from 1996 to 2002 on a 1 km grid.
to 2002, including industrial emission sources (a), on-road vehicle emission sources (b),



B. Zou et al. / Atmospheric Environment 45 (2011) 4977e49854982
It is clear that the variations of annual SO2 concentrations caused by
industrial & on-road vehicle emission sources combined (Fig. 5(c))
are significantly different from those caused by industrial (Fig. 5(a))
or on-road vehicle emission sources alone (Fig. 5(b)). Fig. 5(a)
shows that, while industrial emission sources caused the variations
in high-concentration in areas, such as the northwestern part of
Dallas County, they also resulted in reduced concentrations in other
areas of Dallas County. The pattern in Fig. 5(b) shows that variations
in concentrations from on-road vehicle emission sources increased
over a large area of Dallas County from 1996 to 2002.

Table 2 further illustrates the results of variations in annual SO2
concentration by emission source in Dallas County from 1996 to
2002. For low SO2 concentration variability (i.e. levels 1e3), the
total area exposed is most similar between on-road vehicle and
industrial & on-road vehicle emission sources combined. However,
for those areas with greater variability (levels 4e7) industriale and
industrial & on-road vehicle emission sources combined shared
similar sizes of exposure area, while on-road vehicle emission
sources were negligible. Standard deviations between the three
groups confirm these observations. PD values from the factor-
detector analysis again confirm these results, with a 0.38 between
industrial & on-road vehicle combined and industrial emission
sources, and a 0.42 between industrial & on-road vehicle combined
and on-road vehicle emission sources.

5. Discussion

In contrast to studies using observed or simulated air concen-
trations at limited air quality monitoring or simulating sites to
reflect the temporal variations of air quality in an region over
a short time period (Gomi�s�cek et al., 2004; Cheng et al., 2007; Cyrys
et al., 2008), this study utilized simulated air concentrations at
preset high-density receptors with to reveal the spatial-temporal
variations of regional air quality over long-term periods. In this
way, the drawbacks of sparsely observed or limited simulated data
in disclosing variations of regional air quality may be overcome.
That is, on one hand, the micro-variations in air quality for an area
can be better understood with highly density preset receptors
compared to sparse air quality monitoring or simulated sites. On
the other hand, evaluation results of relative contribution of
emission sources to regional air quality could be more theoretically
Table 2
Summary statistical measures of the variations in annual SO2 concentration at varying con

Levelsa Type

1 Industrial emission sources based
On-road vehicle emission sources based
Industrial & on-road vehicle emission sources combined based

2 Industrial emission sources based
On-road vehicle emission sources based
Industrial & on-road vehicle emission sources combined based

3 Industrial emission sources based
On-road vehicle emission sources based
Industrial & on-road vehicle emission sources combined based

4 Industrial emission sources based
On-road vehicle emission sources based
Industrial & on-road vehicle emission sources combined based

5 Industrial emission sources based
On-road vehicle emission sources based
Industrial & on-road vehicle emission sources combined based

6 Industrial emission sources based
On-road vehicle emission sources based
Industrial & on-road vehicle emission sources combined based

7 Industrial emission sources based
On-road vehicle emission sources based
Industrial & on-road vehicle emission sources combined based

a The break points for different levels are same as shown in Fig. 5.
significant using all the samples in the region at a fine scale but not
with several sparse air quality monitoring or simulating sites on
their own.

The temporal variation analysis of annual ambient SO2 concen-
trations in Dallas County indicates that SO2 pollution in this region
did not consistently increase or decrease from 1996 to 2002. This
result might be predominantly attributed to the unstable variations
of the emission sources across this county, which fluctuated from
238 to 394 tons for industrial facilities, and from 2348 to 1587 tons
for on-road vehicles. This also might be the reason in part for abrupt
variations of maximum and SD of annual SO2 concentrations in
Dallas County before and after 1998. The analysis of the relation-
ships between air quality and meteorological factors in this study
indicates that high levels of air humidity, as well as low air
temperature and wind speed might have resulted in the relatively
higher seasonal SO2 concentration in autumn and winter compared
to spring and summer (see Fig. 6). This finding is similar to the
results reported by Norisada et al. (1998) and Tayanc (2000), who
found that meteorological factors can play an important role in
regional air quality in the process of air dispersion.

Largely consistent with the results of temporal variation
described above, we found that the spatial distribution of annual
SO2 concentrations at different levels in Dallas County also
expanded (e.g. year 1997) or contracted (e.g. year 2001) with
unstable variation from 1996 to 2002. These variations in spatial
distribution of annual SO2 concentrations could be partly attributed
to the variations of the emission sources within the county.
Furthermore, the decreased SO2 concentrations in this study indi-
cates that changes of the spatial pattern of emission sources (e.g.
locations changes of industrial emission sources in 1996 and 2002
shown in Fig. 7) might be another factor causing the variations in
spatial distribution of annual SO2 concentrations at different levels,
as well as the shift of the locations of maximum annual SO2
concentrations in Dallas County over the study period. In addition,
the reason for the areas with relatively higher annual SO2
concentrations and variations in Dallas County occurred in
a northwest to southeast direction, the predominant wind direc-
tion (122 degrees) shown in Fig. 2.

The source apportionment analysis suggests that the spatial
variations in total annual SO2 concentrations in Dallas County
from 1996 to 2002 were not predominantly associated with any
centration levels from different emission sources in Dallas County from 1996 to 2002.

Area percentage (%) Mean (mgm�3) SD

5.22 �0.0249 0.0121
17.29 �0.0937 0.0770
11.89 �0.0993 0.1650
84.86 0.0470 0.0354
68.70 0.1032 0.0611
64.43 0.1139 0.0705
6.47 0.6698 0.2417

14.01 0.4141 0.1516
20.28 0.4029 0.1565
1.64 1.2654 0.2234

e e e

1.21 1.7936 0.7411
0.30 5.8903 1.8940

e e e

0.99 5.9687 1.2207
0.22 10.9195 1.9766

e e e

0.78 11.2535 2.1034
1.29 58.7046 12.7057

e e e

0.43 19.9989 3.4446



Fig. 6. Seasonal average air humidity, wind speed and air temperature in Dallas County from 1996 to 2002.
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particular type of emission source. We have further shown that the
contributions of industrial emission sources and/or on-road vehicle
emission sources to the total annual SO2 concentrations at relative
lower levels (i.e. levels 1e3) in Dallas County were similar (Table 2).
However, the industrial emission sources might significantly
contribute to the total annual SO2 concentrations at relatively
higher levels (levels 4e7), especially for the annual SO2 concen-
trations at the higher end. This finding can be attributed to the
dense concentration of industrial sources in certain areas of the
County.

In addition, although the simulated total annual SO2 concen-
trations in Dallas County were a result of industrial and on-road
vehicles emission sources only, the sum of the PD of industrial
emission sources based on industrial & on-road vehicle emission
sources combined-based annual SO2 concentrations, as well as the
one of on-road vehicle emission sources based on industrial & on-
road vehicle emission sources combined-based annual SO2
concentrations was still less than 1.00. This result suggests that the
influences of industrial and on-road vehicle emission sources on
total annual SO2 concentrations in Dallas County are not indepen-
dent. The combination of these sources amy be causing an additive
effect. This may be the reason why the results shown in Fig. 5(a)
cannot be generated by simply overlaying the results shown in
Fig. 5(b) and (c).

In summary, our findings suggest that previous source-
contribution studies (e.g. Cheng et al., 2007) did not sufficiently
characterize the spatial and temporal complexity of the actual
concentrations in a relatively large geographic area due to the fact
that they utilized only a few points. Our findings further highlight
that variability in air pollution is much more complex than we
might have thought, and thus, more relevant and detailed studies
Fig. 7. Locations of industrial emission sources in
are needed. However, we note that there are still several limitations
that need to be addressed.

While a previous study has reported that the actual ambient SO2
concentration could vary on a scale of tens of meters (Venkatram
et al., 2004), we set the receptors at a resolution of 1 km� 1 km
in Dallas County due to the limited computation resources. As
a result, part of the extreme ambient SO2 concentrations in several
locations might be undetectable and the subsequent temporal
variation analysis results based on the simulated annual SO2
concentrations at locations of these receptors also might be
unstable. However, it should be noted that the regional air quality
is, in theory, more accurately assessed by the simulated ambient
SO2 concentrations at locations of these highly dense receptors
compared to those in earlier studies only with sparse air quality
monitoring or simulated sites (Tayanc, 2000; Cheng et al., 2007;
etc.).

Recent work has shown that spatial analysis results can be
influenced by the modifiable Areal Unit Problem (MAUP) which
may introduce scale and aggregation issues (Ratcliffe and
McCullagh, 1999; Tian et al., 2010). In the process of detecting the
spatial-temporal variation of annual SO2 concentration in Dallas
County from 1996 to 2002 and examining its impact factors in
terms of emission sources, we only produced the SO2 concentration
surface with a grid size of 1 km� 1 km. Although we believe such
a fine grid should be enough to appreciate the intricacies of spatial-
temporal variations of regional total SO2 concentration and further
ascertain source contributors, our results may be further improved
by clearly ascertaining scaling effects (e.g. 1 km� 1 km,
2 km� 2 km, 3 km� 3 km) in future studies.

In addition, the ambient SO2 concentration in Dallas Countywere
not only caused by industrial and on-road vehicle emission sources,
Dallas County in years 1996 (a) and 2002 (b).
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but also may be influenced by other area and biogenic emission
sources, as well as from long-range transport and from adjacent
areas. As a result, the ambient SO2 concentration in this studymight
be underestimated and the other spatial-temporal variations of
ambient SO2 concentration resulting from these types of emission
sources may remain un-differentiated. Meanwhile, we should note
that the ambient SO2 concentration in some study areas originate
from both local emission sources and regional background SO2
pollution, even though this is not the case for Dallas county from
1996 to 2002 due to the limited SO2 emissions (Zou et al., 2010). In
the source apportionment analysis, we only ascertained the contri-
bution of the type of industrial and/or on-road vehicle emission
sources to the regional total SO2 concentration. Due to the
complexity of air dispersion modeling, this operation makes it
impossible to accurately determine the contribution of a certain
industrial emission source (e.g. coal or gas power plant) or a certain
portion of road emissions (e.g. diesel vs. petrol contribution, see Int
Panis et al., 2002) to the total SO2 concentration in the study area.

6. Conclusion

This study demonstrated that the analysis of spatial-temporal
variations in regional air quality as well as the evaluation of
different emission sources affecting air quality in an area through
an air dispersion modeling approach can produce results that are
more accurate than air quality data obtained from sparsely located
monitoring sites. We also have shown the potential of utilizing air
dispersion models and GIS-based spatial analysis to disclose micro-
variations in air pollution concentrations at a fine geographic scale
while parsing out source contributors. Our results show that most
areas of Dallas County only experienced small variations of SO2
concentration over the period from 1996 to 2002 and that annual
SO2 concentrations in some areas of the county greatly increased
over this period. In addition, results from the source-contribution
analysis indicated that the spatial-temporal variations in SO2
concentration in Dallas County from 1996 to 2002 were not
attributed to any particular type of emission source, but industrial
emission sources could be the origin of extreme variations in SO2
concentrations in some areas. The approach presented in this paper
provides a general framework for effectively assessing air pollution
exposure risk in a given urban area. This approach shows promise
for use by policy makers, environmentalists, and epidemiologists in
understanding the complex spatial-temporal variations of regional
ambient air quality over long periods of time.
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