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Abstract: Sampling and estimation of geographical attributes that vary across space (e.g., 

area temperature, urban pollution level, provincial cultivated land, regional population 

mortality and state agricultural production) are common yet important constituents of many 

real-world applications. Spatial attribute estimation and the associated accuracy depend on 

the available sampling design and statistical inference modelling. In the present work, our 

concern is areal attribute estimation, in which the spatial sampling and Kriging means are 

compared in terms of mean values, variances of mean values, comparative efficiencies and 

underlying conditions. Both the theoretical analysis and the empirical study show that the 

mean Kriging technique outperforms other commonly-used techniques. Estimation 

techniques that account for spatial correlation (dependence) are more efficient than those 

that do not, whereas the comparative efficiencies of the various methods change with 

surface features. The mean Kriging technique can be applied to other spatially distributed 

attributes, as well.  

Keywords: random field; mean Kriging; spatial dependence; GIS  

 

 

OPEN ACCESS



Sensors 2009, 9              

 

 

5225

1. Introduction  

Spatial estimation techniques have many applications in the study of attributes, such as soil and 

land cultivation properties, water resource parameters, air pollution variables, population disease 

characteristics, regional poverty levels and agricultural production indices [1-3]. In addition, the 

assessment of the uncertainty associated with the generated estimates is as important as attribute 

estimation itself. E.g., if the accuracy of an attribute estimate is low (i.e., the uncertainty is high), the 

estimate is rather useless or even misleading. If, on the other hand, the accuracy is high, the estimated 

attribute value could be used in decision-making, such as the international negotiations of carbon 

emission reduction to address the global warming challenge.  

In the GIS context, there are two main methodologies of area mean attribute estimation:  

a. One general methodology focuses on spatial statistics-based estimates using a set of 

observations/measurements across space [4-7]. This methodology includes objective 

analysis-, superpopulation model-, sampling- and design-based techniques [7-12].  

b. Another major methodology relies on physical mechanism-based estimates in 

addition to the datasets available [13-17]. This methodology includes Bayesian 

maximum entropy (BME) techniques [18-21], variational assimilation and Kalman 

techniques [22-26].  

In theory, methodology b is superior to methodology a since, in addition to the available datasets, it 

can offer a more physically meaningful and informative analysis of the phenomenon of interest by 

accounting for valuable knowledge in the form of scientific theories, physical laws and primitive 

equations [27-29]. In practice, however, this kind of knowledge is often not available (or, if available, 

the computational procedures to account for it do not yet exist or are of limited use), in which case the 

efficiency of the techniques belonging to methodology a proves to be very useful. It is for this reason 

that a spatial statistics-based technique belonging to methodology a is considered in this work.  

Spatial statistics-based techniques seek to account for uncertainty caused by gaps between the 

sampled sites [30]. A simple sample mean is an unbiased estimate of both the observable population 

and the superpopulation means, under the conditions of a second-order stationary object surface and a 

randomly distributed sample over space [31,32], but the variance of the estimate is not minimized. 

Spatial sampling techniques improve the efficiency of sampling and estimation by taking spatial 

correlation (dependence) into account [33], but that does not always guarantee that the estimation 

variance is minimized. Kriging leads to an unbiased estimate for unsampled values with the least 

variance [7], but the estimation of the mean attribute in terms of a summation of individual estimates at 

unsampled sites may also accumulate the errors of each individual estimate. Kriging the attribute mean 

across space yields an estimation of the area mean that is unbiased and has the minimum estimation 

variance. The technique has already existed in the literature for several decades – Kriging was 

originally developed in the context of Wiener-Kolmogorov estimation and objective  

analysis [6,10,34-36]. In the present work, our concern is twofold: the estimation of the spatial 

attribute mean over a specified area using the mean Kriging technique, and the study of the probability 

distribution of these estimates over the area of interest. Practical insight is gained in terms of a 

temperature dataset and a land use dataset distributed in space, in which the mean Kriging analysis is 
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compared with previous techniques, such as ordinary Kriging, spatial random sampling and simple 

random sampling techniques.  

2. Spatial Random Field Representation of Attributes and Their Means  

Let a geographical attribute be represented mathematically by the spatial random field (SRF), Y(s) 

in the sense of Christakos [34]. The s denotes the spatial coordinates of location s  and the SRF 

includes a family of spatially correlated (geographically dependent) random variables y1,…,yn at 

sample points s1,…,sn. A number of concepts of GIS interest can be defined in the SRF context, see 

below. 

The observed spatial population mean (OSPM) over an area   of the attribute represented by the 

SRF Y(s), also called the observed area mean, is defined as: 

  ss dYY )(1  (1)

where s varies within  . The Y  is a random quantity, i.e., even when considering the same area  , 

one may get different results if the Y  is computed over different realizations. 

In the GIS context, the superpopulation mean (SPM) of the SRF at each location s, also called the 

stochastic mean, is defined as:  

m(s)  E[Y (s)] ds(s) fY (s)  (2)

where E[·] denotes stochastic expectation, the fY(s) is the probability density function (pdf) of the SRF 

Y(s) and (s) is the SRF realization at s. The m(s) is the average value of all SRF realizations at each s 

and is a non-random quantity. Note that it has to a single value m for all locations s, as long as the SRF 

is 1st-order stationary, i.e., E[Y(s)] = const. for all s.  

The simple sample mean (SSM) is defined as: 

 
n
i inn yY 1

1  (3)

where yi are the corresponding random variables at locations si (i = 1,…,n) within the study area  . 

The nY  is a random quantity, since the random variables yi can assume various values (realizations) 

and the n sample units can be drawn randomly across space. Equation (3) would be the best linear 

unbiased estimate of both the observable population mean and the superpopulation mean if the si 

(i = 1,…,n) are randomly distributed over space and the corresponding SRF is 1st-order spatial 

stationary; i.e., mnmyEYE n
n
i inn  

1
1

1 ][][ .  

The weighted sample mean (WSM) is defined as:  

 
n
i ii

w
n ywY 1  (4)

where wi are weights assigned to the random variables yi (i = 1,…,n). Again, 
w
nY  is a random quantity. 

Clearly, nY  is a special case of 
w
nY  when all weights are equal, i.e., niw 1 .  
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3. SSM of OSPM 

The variance of SSM is given by: 


Y n

2  E[Y n Y ]2  E[ 1
n yii1

n  1
 dsY(s) ]2  p

2 F(n)  

where  p
2 is dispersion variance of the population of the target area and F(n) is a variance reduction 

factor and estimated by [37]: 
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where n is the number of sampling units and k is the number of strata; simple random sampling 

disregards spatial correlation, whereas the spatial random sampling and spatial stratified sampling take 

spatial correlation into account; the r(si – sj) expresses spatial dependence between any two sites si and 

sj; E[r(si – sj |·] is usually a positive quantity lying in the interval [0, 1] and can be estimated directly 
from the observed r(si  sj )  values and the probability distribution of distances over the study area  

or the strata /k [38].  
Next we investigate the role of spatial correlation and sampling design on the sample mean variance. 

Let n0, nr, and ns denote the numbers of sample units for simple random sampling, spatial random 

sampling and spatial stratified sampling, respectively. To assure the required estimation accuracy 2

nY
 , 

one finds from (5) that: 
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Because 0  E[r(si  sj |]  E[r(si  sj | /k]  by Tobler’s first law of geography [39], which 

argues that nearby attribute values are more similar than those that are further apart; consequently,  

ns ≤ nr ≤ n0 [from Equations (6)-(8)]. Similarly, given the same sample size n, one can compare the 

variances of the three sampling mean estimates and conclude that: Var (simple random sampling mean) 

 Var (spatial random sampling mean)  Var (spatial stratified sampling mean). The conclusion is that 

the stratified sampling is generally more efficient in reducing estimation variance than random 

sampling, and the sampling regarding spatial correlation is generally more efficient than that which 

neglects spatial autocorrelation. Efficiency refers to the fact that using fewer sample units leads to 

higher estimation accuracy. The SSM property of best linear unbiased estimation when sampling 1st-

order spatial stationary SRF would not be retained when sampling 2nd-order stationary SRF, a 

drawback that can be overcome by WSM or mean Kriging.  
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4. Mean Kriging of OSPM  

One can estimate the OSPM (Y ) by the WSM (Y N
w
) using a Kriging technique (a presentation of 

the various Kriging techniques and their relation to other spatial estimation methods can be found 

in [34]). The WSM 
w
nY  satisfies two conditions: (a) it is an unbiased estimate of the OSPM Y , and 

(b) it minimizes the mean squared estimation error. Condition (a) implies that: 

][][  YEYE
w
n  or ])([][ 1

1   ssYdEywE n
i ii  

Since the SRF Y(s) is 1st order spatial stationary E[yi] = E[Y(s)], that leads to: 

11  
n
i iw  

The mean squared estimation variance is given by: 
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which, by condition (b), must be minimized with respect to the weights subject to 11  
n
i iw , that is, 

quantity ]1[2 1
2  

n
i iY

ww
n

  must be minimized with respect to the weights wi and the Lagrange 

multiplier θ. This leads to the system of equations: 
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or in matrix form: 
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 (10)

where CY denotes the corresponding covariances and  is a Langrange multiplier that accounts for the 

estimation unbiasedness condition. Note that the Equation (10) above are essentially the block Kriging 

equations [35] but derived without the assumption of the identical dispersion variance. The integral is 

evaluated by a summation of the values at regularly discretized points over the area of interest. The 

integration error is incorporated in the estimation mean variance, see Equation (13) below. The domain 

boundary effect can be mitigated by drawing more samples around the intersection of the integration 

grid and the study area boundary.  

After the weights wi and the multiplier θ have been calculated from Equation (10), they are 

substituted back into Equation (4) to obtain the WSM, 
w
nY . The corresponding minimum error 

estimation variance of the WSM is given by: 

       


n
j iYiY

w
n

Y
cwdcddYYEw

n
1

1122 ),(),(][ 2 sssssss  (11)

As we shall see below, the set of the mean Kriging Equations (4), (10) and (11) can be implemented 

with efficiency in the GIS environment. 
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Let y = (y1,…,yk) be the random vector (family of random variables) of the SRF Y(s) at points 

s1,…,sk. According to probability theory [40], if (y1, …, yn) ~ N(m, V), then from Equation (4) it is 

valid that ),(~ 2mNY
w
n , where: 

][1 
n
i ii yEwm  (12)

[the weights wi have been calculated from Equation (10)], the assumption of a spatially constant SRF 

mean still holds, and: 

  ji jiYji
n
i yi cwww

i
),(21

222 ss  (13)

In light of Equation (13), a confident interval of the mean Kriging can be calculated given a 

confidence level. E.g., with 95% confidence the value of WSM falls into the interval m ± 1.96σ. Note 

that if y is shown to be skewed by the Kolmogorov-Smirnov statistics test or it turns out to be non-

stationary, then detrending, square root transformation, lognormal transformation etc. may be used to 

transform y into a normal probability distribution [40].  

In GIS practice to implement the Mean Kriging, one needs to calculate the spatial dependence 

functions, covariance and variogram, that are related as:  

cY
i j Y

2  Y
i j ,      i, j 1,...,N

Y
2  c0  c1





 (14)

where cY
i j  (i,j = 1,…,N) is the covariance between the points si and sj, Y

i j  is the corresponding 

variogram, Y
2  is the variogram sill, c0 is the nugget effect and c1 is the partial sill. Usually, the 

variogram is first calculated experimentally, then a theoretical model is fitted to the experimental 

variogram, and finally the corresponding covariance is obtained using Equation (14). To the 

experimental variogram calculated on the basis of the dataset one can fit one of the available 

theoretical variogram models [41-44]. E.g., the spherical variogram model is used in the temperature 

case study considered in this work, see later. 

5. Case Study I 

Next we demonstrate the use of the mean Kriging technique in a GIS environment using a 

temperature dataset. This dataset includes temperature values (in ºC) generated by the remotely sensed 

image of surface temperature over the study area. We then compare mean area temperature values 

estimated by simple random sampling, spatial random sampling and ordinary Kriging.  

5.1. Study Area 

The study area is the Shandong Province located in the eastern part of China, along the downstream 

of the Yellow River and bordering the Bohai Sea and Yellow Sea. Shandong lies in the temperate zone 

with a half-moisture monsoon climate, an annual average temperature of 12.7 ºC and an average 

annual rainfall of 750 mm. Shandong Province is one of China’s most important agricultural economic 

regions. The climate change has a significantly impact on the region’s agriculture.  

Figure 1 shows the MODIS image of ground temperature in the Laiyang county (Shandong 

province) obtained at 10:20 pm on May 14th, 2007. Each pixel of the MODIS image is regarded as a 
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candidate sample unit. Empirical sample datasets are readily obtained by randomly sampling the image 

with different proportions The dataset shows that the temperature distribution is very close to the 

normal distribution (Figure 2). The skew statistics is S = 0.038 and the std error is σ(s) = 0.188 [i.e., 

S << 2σ(s)], in which case the skew value indicates that the distribution is almost normal although 

slightly positively skewed.  

Figure 1. Temperature distribution (in ºC), Laiyang county (Shandong, China) at 10:20 pm 

on May 14th, 2007 (MODIS). 

 

Figure 2.  Histogram and simulated pdf of the normal distribution for the temperature 

dataset (in ºC). The dataset belongs to a normal distribution with mean m = 26.68 ºC and 

std deviation σ = 1.403 ºC. 
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5.2. Variogram and Covariance Modeling 

Pair-wise correlation (dependence) are calculated using MODIS image of ground surface. To the 

discrete (experimental) variogram we fitted the spherical variogram model (Figure 3a): 

  

Y
i j 

c0  c1[1.5
hij

a  0.5(
hij

a )3]   if  hij  a

c0  c1   otherwise






 (15)

where hij = si – sj = λh (h = 5482.5 meters is the lag and λ = 1,…,12 is the lag number); c0 = 0.61848 is 

the nugget effect, c1 = 2.667 is the partial sill, and a = 64985.6 meters is the variogram range, the 

values are regressed from sample data. The corresponding covariance is as follows (Figure 3b): 

 

cY
i j 

c1[11.5
hij

a  0.5(
hij

a )3]  if  hij  a

0   otherwise






 (16)

Figure 3. Fitting the spherical model to the experimental: (a) variogram and (b) covariance 

temperature values. 

  
(a)        (b) 

 

The variogram model (15) was chosen on the basis of experimentation. Several models were tested 

and the spherical variogram model offered a closer numerical fit to the observed data and also a 

simpler analytical form (Figure 3). Surely, the present analysis is tailored to the particular dataset of 

the case study. Hence, one can’t say with certainty that the spherical model offers an ultimate 

representation of temperature variation. More tests are required to determine a spatial variogram that 

provides the closest match to regional temperature variation with specified environmental, geophysical 

and soil characteristics. The maximum dependence range was calculated from the experimental 

variogram plot. The weighted least square (WLS) technique performed better than the OLS technique 

in fitting the theoretical model to the experimental variogram; in particular, WLS obtains more 

accurate spatial continuity estimates than OLS close to the origin (h = 0) and it does not need the 

assumption of normal and independent-identically-distributed (iid) residuals. There is a certain level of 

model uncertainty in experimental variogram fit, and this has an impact on the mean kriging variance. 

5.3. Spatial Temperature Mmeans Obtained by the Various Techniques 

Table 1 lists the mean values, their variances and confidence intervals using the techniques of 

simple random sampling, spatial random sampling, ordinary Kriging and mean Kriging, under a 
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sampling proportion of 10%. Figures 4-6 display the means, their standard variances and confidence 

intervals estimated by the techniques under different sampling proportions.  

Table 1. Spatial temperature means and their confidence intervals estimated by three 

techniques (10% sampling proportion).  

Technique Spatial mean (ºC) Standard deviation (ºC) 95% confidence interval 
Simple random sampling 29.70 1.194 [27.43, 31.97] 
Spatial random sampling  29.84 1.19 [27.50, 32.17] 
Ordinary Kriging 29.62 1.31 [27.06, 32.18] 
Mean Kriging 29.84 1.16 [27.49, 32.18] 

Figure 4. Estimates of the temperature OSPM (in °C) by various techniques. 

 

Figure 5.  Standard variances of the estimated temperature (in oC) means by the three 

techniques. 

 

The results obtained above show that mean Kriging has achieved a better effect, smaller variance 

and better accuracy of the temperature mean among the proportions ranging from 5% to 90% (5, 10, 

20, 30, 40, 50, 60, 70, 80 and 90%). In Figure 4, the temperature mean estimated by mean Kriging is 

closer to the reference line of the observed temperature value than are the mean values obtained by 
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ordinary Kriging, spatial random sampling and simple random sampling; the sampling proportion 

varies from 5 to 90%. The relatively small change in “standard variance” with increasing sample size 

in the case of mean Kriging is linked to the apparently small sill in the modelled variogram (i.e., the 

data is highly homogeneous so that additional samples add little information about the SRF). 

Furthermore, Figure 5 shows that the std error variance of spatial mean estimation in terms of mean 

Kriging technique is minimized, which is not the case with ordinary Kriging, spatial random sampling 

and simple random sampling. Finally, Figure 6 shows that the confidence intervals obtained by mean 

Kriging are narrower than other techniques, a fact that indicates the higher accuracy of mean Kriging. 

Figure 6.  Confidence intervals of the estimated temperature means (in ºC) by various 

techniques. 

 

6. Case Study II 

6.1. The Study Region  

The study region is Shandong province (eastern China). Our aim is to obtain a survey of the 

proportion of cultivated land in the Shandong province. Actually, the cultivated land and the total 

territory have already been completely counted in the year 2000 by aerial photos (Figure 7). Table 2 

gives a descriptive statistics of the enumerate survey. 

Figure 7.  Cultivated land enumerate survey by aerial photos in Shandong (China) in year 

2000. 

Legend

Sample

100 0 10050

±
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Table 2. Descriptive statistics. 

N* Minimum Maxim um Mean Std. Deviation Skewness 
Statistic Std. Error 

438 .0218 .9977 .2003 .2171401 1.570 .117 

* Note: the observed proportion of cultivated land of Shandong province is 0.265 via completed counting of the coverage. 

6.2. Transformation of the Target Variable  

Let the original target variable (the proportion of the cultivated land in Shandong province) be 

denoted by x. The x is found to be non-normally distributed, in which case the transform )log( xy   

is conducted. The histogram of the transformed values is shown in Figure 8.  

Figure 8. Transformed histogram of crude cultivated land values. 

 
 

The skew statistics is S = 0.09 and the std error is σ(s) = 0.3722, in which case S << 2σ(s). The skew 

value indicates that the distribution of the transformed sample attribute is almost normally distributed. 

6.3. Modeling the Variogram  

The experimental variogram and covariance are presented in Figure 9. By exploratory data analysis, 

we use the spherical variogram model below to simulate the data: 
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Figure 9.  Fitting the spherical model to the experimental: (a) variogram and (b) 

covariance. 
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(a)        (b) 

6.4. Sample Estimates of the Rate of Cultivated Land  

Table 3 presents estimates of the proportion of cultivated land by the various techniques all in 10% 

sampling proportion; and Figures 10-12 present the parameters, as Figures 4-6. 

Table 3. Descriptive statistics. 

Technique Spatial mean Standard variance 95% confidence interval 
Simple random sampling 0.2040 0.20561 [-0.199, 0.607] 
Spatial random sampling 0.2041 0.20083 [-0.199, 0.607] 
Ordinary Kriging 0.1984 0.04226 [0.1154, 0.281] 
Mean Kriging 0.1966 0.014218 [0.1687, 0.2245]  

Figure 10. Estimates of the cultivated land OSPM by various techniques. 
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Figure 11. Standard variances of the estimated cultivated land proportion by the three techniques. 

 

Figure 12. Confidence intervals of the estimated cultivated land proportion by various techniques.  

 

7. Discussion and Conclusions 

A method is discussed to estimate the OSPM in a GIS environment. Table 4 summarizes the 

formulas describing spatial means and the associated variances obtained by different techniques of 

estimating the OSPM. The estimation variances are ranked as: 0 = variance of observable spatial 

population mean < variance of mean Kriging mean < variance of ordinary Kriging mean < variance of 

spatial random sampling mean < variance of simple random sampling mean. The second inequality is 

due to the fact that ordinary Kriging minimizes the variance at a single site but cannot guarantee 

minimization of the sample mean variance; the latter is guaranteed by mean Kriging. The comparative 

advantage of one method over another reduces when the studied area tends to be more homogeneous 

and less spatially-dependent. In practice, the randomness of empirical cases could lead to insignificant 

differences. 
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Table 4. Mean and variance formulas of four spatial estimation techniques. The OSPM is also shown. 

 Mean value Variance of mean value 

Simple random sampling [31]  1
N yii1

N  
                    1

N A

where  A  1
N {yii1

N  E[yi]}
2
 

Spatial random sampling [29] 1
N yii1

N  
                          1

N {A  E[cY (s i ,s j )]}

where  cY (s i ,s j )  1
N ( N1) {yij1

N1  E[yi ]}{y ji1

N  E[y j ]})]
 

Ordinary Kriging [35] wii1

N yi  and 
1
N yii1

N  
A  wii1

N E[cY (s i ,s j )] m  and wii1

N  i
2  

Mean Kriging (this paper) wii1

N yi  
1
2 ds d s cY (s, s )  1

 ds wi cY (s,s i )j1

N m  

Observable spatial population 

mean (OSPM) 
)(

1
sdsY  0 

 

Although the calculation of a SSM is meaningful, straightforward and unbiased (it has the same 

expected value as the OSPM and SPM), its variance is not minimized and it suffers from the 

assumption of equal probability drawing. The OSPM can be estimated by a summation of both values 

at sampled sites and values at unsampled sites estimated by ordinary Kriging. The Kriging weights 

attached to different spatial locations within clusters are smaller than those of distanced points, so 

Kriging is a declustering technique. The mean squared estimation error obtained by kriging was 

considerably smaller than that of the unweighted sample mean. Although unbiased estimates were 

derived and their variances were minimized by ordinary Kriging estimation, the spatial mean 

estimation error (derived by the summation of Kriging values) may accumulate. In addition to the 

OSPM estimates, the probability distribution of these estimate for the region of interest were derived. 

These are best linear unbiased OSPM estimates and can be used in more relaxed GIS situations than 

the original block Kriging. 

Using MODIS we generated ground temperature values in the Laiyang county, Shandong Province 

(China). It was shown that the mean Kriging technique outperformed techniques based on simple 

random sampling, spatial random sampling and ordinary Kriging in estimating the OSPM of the 

temperature. The mean Kriging not only accounted for the spatial correlation, as do the conventional 

spatial sampling techniques, but it also minimized the variance of the objective value as does Kriging. 

In this study, we focused on the sample estimation and its uncertainty due to sampling design and 

sample statistics. Since a sample unit is often not uncertainty-free, the sample uncertainty could finally 

propagate in the context of spatial mean and its variance, which is something that deserves further 

investigation. 
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